2-D Linear Systems of the Form: $\frac{d \overrightarrow{\mathbf{x}}}{d t}=A(\overrightarrow{\mathbf{x}}-\overrightarrow{\mathbf{a}})$ and $\frac{d \overrightarrow{\mathbf{x}}}{d t}=A \overrightarrow{\mathbf{x}}+\overrightarrow{\mathbf{b}}$
[1] Consider $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime}\end{array}\right]=\left[\begin{array}{cc}3 & -3 \\ -1 & 5\end{array}\right]\left[\begin{array}{l}x_{1}-2 \\ x_{2}-3\end{array}\right]$.
(a) Find all equilibria.
(b) Find general solutions.
(c) Solve under the initial condition $\overrightarrow{\mathrm{x}}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
(d) Sketch the phase portrait.
(e) Determine whether each equilibrium is stable, asymptotically stable, or unstable.
[2] Consider $\frac{d \overrightarrow{\mathbf{x}}}{d t}=\left[\begin{array}{cc}0 & 5 \\ -2 & -2\end{array}\right] \overrightarrow{\mathbf{x}}+\left[\begin{array}{l}-5 \\ -2\end{array}\right]$.
(a) Find all equilibria.
(b) Convert the system to the form $\frac{d \overrightarrow{\mathbf{x}}}{d t}=A(\overrightarrow{\mathbf{x}}-\overrightarrow{\mathbf{a}})$.
(c) Find general solutions.
(d) Sketch the phase portrait.
(e) Determine whether each equilibrium is stable, asymptotically stable, or unstable.
[3] Consider $\frac{d \overrightarrow{\mathbf{x}}}{d t}=\left[\begin{array}{cc}-1 & 2 \\ 1 & -2\end{array}\right] \overrightarrow{\mathrm{x}}+\left[\begin{array}{c}-2 \\ 2\end{array}\right]$.
(a) Find all equilibria.
(b) Convert the system to the form $\frac{d \overrightarrow{\mathbf{x}}}{d t}=A(\overrightarrow{\mathrm{x}}-\overrightarrow{\mathbf{a}})$.
(c) Find general solutions.
(d) Sketch the phase portrait.
(e) Determine whether each equilibrium is stable, asymptotically stable, or unstable.

Answers:

[1] (a) $(2,3)$.
(b) $\overrightarrow{\mathbf{x}}(t)=\left[\begin{array}{l}2 \\ 3\end{array}\right]+C_{1} e^{2 t}\left[\begin{array}{l}3 \\ 1\end{array}\right]+C_{2} e^{6 t}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$, where C_{1} and C_{2} are free parameters.
(c) $\overrightarrow{\mathbf{x}}(t)=\left[\begin{array}{l}2 \\ 3\end{array}\right]-e^{2 t}\left[\begin{array}{l}3 \\ 1\end{array}\right]-2 e^{6 t}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$,
or, equivalently, $\overrightarrow{\mathbf{x}}(t)=\left[\begin{array}{c}2-3 e^{2 t}+2 e^{6 t} \\ 3-e^{2 t}-2 e^{6 t}\end{array}\right]$.
(d)

(e) Equilibrium $(2,3)$ is unstable.
[2] (a) $(-2,1)$.
(b) $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime}\end{array}\right]=\left[\begin{array}{cc}0 & 5 \\ -2 & -2\end{array}\right]\left[\begin{array}{l}x_{1}+2 \\ x_{2}-1\end{array}\right]$.
(c) $\overrightarrow{\mathbf{x}}(t)=\left[\begin{array}{c}-2 \\ 1\end{array}\right]+C_{1} e^{-t}\left(\cos (3 t)\left[\begin{array}{c}5 \\ -1\end{array}\right]-\sin (3 t)\left[\begin{array}{l}0 \\ 3\end{array}\right]\right)+C_{2} e^{-t}\left(\sin (3 t)\left[\begin{array}{c}5 \\ -1\end{array}\right]+\cos (3 t)\left[\begin{array}{l}0 \\ 3\end{array}\right]\right)$
(d)

(e) Equilibrium $(-2,1)$ is asymptotically stable.
[3] (a) All points on the line passing through the point $(0,1)$ parallel to the vector $\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Or, equivalently, all points on the line $x_{2}=1+\frac{1}{2} x_{1}$.
Or, we may also say: all points $\left(x_{1}, x_{2}\right)=\left(2 x_{2}-2, x_{2}\right)$, where x_{2} is arbitrary.
(b) $\frac{d \overrightarrow{\mathbf{x}}}{d t}=\left[\begin{array}{cc}-1 & 2 \\ 1 & -2\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2}-1\end{array}\right]$.

Remark: To convert, I picked a particular equilibrium (0,1). Any other equilibrium will do as well. For instance, if we pick $(4,3)$, then the converted system will be $\frac{d \overrightarrow{\mathbf{x}}}{d t}=\left[\begin{array}{cc}-1 & 2 \\ 1 & -2\end{array}\right]\left[\begin{array}{l}x_{1}-4 \\ x_{2}-3\end{array}\right]$.
(c) $\overrightarrow{\mathbf{x}}(t)=\left[\begin{array}{l}0 \\ 1\end{array}\right]+C_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+C_{2} e^{-3 t}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.

Or, $\overrightarrow{\mathbf{x}}(t)=\left[\begin{array}{l}4 \\ 3\end{array}\right]+C_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+C_{2} e^{-3 t}\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ is correct too $\ldots .$.
(d)

Attractive Line of Equilibria

(e) Every equilibrium is stable but not asymptotically stable.

