The Linear Approximating System of a Nonlinear System Near an Equilibrium

[1] Consider

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=x_{1}-x_{1}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \tag{*}\\
x_{2}^{\prime}=-x_{2}-x_{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \\
x_{3}^{\prime}=-2 x_{3}-x_{3}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)
\end{array}\right.
$$

(a) Find all equilibrium solutions of the system (*).
(b) For each equilibrium point,

- give the linear approximating system near the equilibrium;
- determine whether the equilibrium is stable or unstable with respect to the nonlinear system $(*)$.
[2] Consider

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=-x_{1}+x_{1}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \tag{*}\\
x_{2}^{\prime}=x_{2}+x_{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \\
x_{3}^{\prime}=2 x_{3}+x_{3}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)
\end{array}\right.
$$

(Notice that the right sides of this system are the same as those in [1], except that the signs are switched.)
(a) Find all equilibrium solutions of the system $(*)$.
(b) For each equilibrium point,

- give the linear approximating system near the equilibrium;
- determine whether the equilibrium is stable or unstable with respect to the nonlinear system $(*)$.
[3] Consider

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=-2 x_{1}-x_{2}-x_{1} x_{3}, \tag{*}\\
x_{2}^{\prime}=x_{1}-2 x_{2}+x_{2} x_{3}, \\
x_{3}^{\prime}=-x_{3}-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}
\end{array}\right.
$$

(a) Find all equilibrium solutions of the system $(*)$.
(b) For each equilibrium point,

- give the linear approximating system near the equilibrium;
- determine whether the equilibrium is stable or unstable with respect to the nonlinear system (*).

Answers:

[1] (a) $(0,0,0),(1,0,0),(-1,0,0)$.
(b) Near $(0,0,0)$: the linear approximating system is $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime} \\ x_{3}^{\prime}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$. $(0,0,0)$ is unstable.

Near $(1,0,0)$: the linear approximating system is $\left[\begin{array}{c}x_{1}^{\prime} \\ x_{2}^{\prime} \\ x_{3}^{\prime}\end{array}\right]=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3\end{array}\right]\left[\begin{array}{c}x_{1}-1 \\ x_{2} \\ x_{3}\end{array}\right]$. $(1,0,0)$ is asymptotically stable.

Near $(-1,0,0)$: the linear approximating system is $\left[\begin{array}{c}x_{1}^{\prime} \\ x_{2}^{\prime} \\ x_{3}^{\prime}\end{array}\right]=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3\end{array}\right]\left[\begin{array}{c}x_{1}+1 \\ x_{2} \\ x_{3}\end{array}\right]$. $(-1,0,0)$ is asymptotically stable.
[2] (a) $(0,0,0),(1,0,0),(-1,0,0)$.
(b) Near $(0,0,0)$: the linear approximating system is $\left[\begin{array}{c}x_{1}^{\prime} \\ x_{2}^{\prime} \\ x_{3}^{\prime}\end{array}\right]=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$. $(0,0,0)$ is unstable.

Near $(1,0,0)$: the linear approximating system is $\left[\begin{array}{c}x_{1}^{\prime} \\ x_{2}^{\prime} \\ x_{3}^{\prime}\end{array}\right]=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]\left[\begin{array}{c}x_{1}-1 \\ x_{2} \\ x_{3}\end{array}\right]$. $(1,0,0)$ is unstable.

Near $(-1,0,0)$: the linear approximating system is $\left[\begin{array}{c}x_{1}^{\prime} \\ x_{2}^{\prime} \\ x_{3}^{\prime}\end{array}\right]=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]\left[\begin{array}{c}x_{1}+1 \\ x_{2} \\ x_{3}\end{array}\right]$. $(-1,0,0)$ is unstable.
[3] (a) $(0,0,0),(0,0,-1)$.
(b) Near $(0,0,0)$: the linear approximating system is $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime} \\ x_{3}^{\prime}\end{array}\right]=\left[\begin{array}{ccc}-2 & -1 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$. $(0,0,0)$ is asymptotically stable.

Near $(0,0,-1)$: the linear approximating system is $\left[\begin{array}{c}x_{1}^{\prime} \\ x_{2}^{\prime} \\ x_{3}^{\prime}\end{array}\right]=\left[\begin{array}{ccc}-1 & -1 & 0 \\ 1 & -3 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}+1\end{array}\right]$. $(0,0,-1)$ is unstable.

