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For many applied mathematicians, engineers, and scientists, mathematical modeling is
akin to poetry—an art form and creative acl employing language that adheres to form

and

conventions. Likewise, there are rules (e.g., physical laws) that the mathematical modeler

must follow, yet he or she has access to a myriad of mathematical tools (thel

anguage) for de-

scribing the phenomenon under investigation, History abounds with the names of scientists,

mathematicians, and engineers,

driven by the desire to understand nature and advance tech-

nology, who have engaged in the practice of mathematical modeling: Newton, Euler, von
Kdrmdn, Verhulst, Maxwell, Rayleigh, Navier. Stokes, Heaviside, Einstein, Schrodinger,
and so on. Their contributions have literally changed the world. Nowadays, mathematical

modeling is carried out in unive

rsities, government agencies and laboratories, business and

industrial concerns, policy think tanks, and institutes dedicated to research and education.
For many practitioners of mathematical modeling, it is, in a sense, their raison d'étre.

PROBLEMS
s EEEEEEN

1. Newton’s Law of Cooling. A cup of hot coffec has a
temperature of 200°F when freshly poured, and is left in

4 room at 70°F. One minute later the coffee has cooled to
190°F.

(@) Assume that Newton’s law of cooling applies. Write
down an initial value problem that models the temperature
of the coffee.

(b) Determine when the coffee reaches a temperature of
170°F.

2. Blood plasma is stored at 40°F. Before it can be used, it

must be ar 90°E. When the plasma is placed in an oven at
[20°F, it takes 45 minutes (min) for the plasma to warm o
90°F. Assume Newton's law of cooling applies. How long
will it take the plasma to warm 10 90°F if the aven lempera-
ture is set at 100°F?

Ao AULEO9 pam. a forensics expert arrives at i crime scene
where a dead body has just been found. Immediately, she
lakes the temperature of the body and finds it to be 80°F,
She also notes that the programmable thermostat shows thai
the room has been kept at a constant 68°F for the past 3 days.
After evidence from the crime seene is collected, (he temper-
ature of the body is (aken once more and found 10 be 78.5°F,
This last temperature reading was taken exactly one hour af-
ter the first one. The next day the investigating detective asks
the forensic expert, “What time did our victim die?” Assum-
ing that the victim's body temperature was normal (98.6°[)
prior to death, what does she tol] the detective?
4. Population Problems, Consider a population p of field

mice that grows at a rafe proportional to the current popula-
tion, so that dp /dr = .

(a) Find the rate constant r if the population doubles in 30
days.

(b) Find r if the population doubles in N days.
5. The field mouse population in Example 3 satisfies the dif-
[erential equation

dp/dt = 0.5p — 450.

.~.-....---...
(a) Find the time at which the population becomes extinct if
p(0) = 850.

(b) Find the time of extinction if p(0) = Po» Where
0 < py < 900.

(¢) Find the initial population p, if the population is to be-
come extinct in 1 year.

6. Radioactive Decay. Experiments show that a radioiso-
lope decays at 4 rate negalively proportional o (he amount
of the isotope present,

(a) Use the following variables and parameters to write
down and solve an initial value problem for the process of
radioactive decay: ¢ = time; a(f) = amount of the radioiso-
tope present at time ¢ @, = initial amount of radioisotope;
r = decay rate, where » > 0.

(b) The half-life, T\ /2, of a radioisotope is the amount of
time it takes for a quantity of the radioactive material to de-
cay to one-half of its original amount. Find an expression for
Ty, in terms of the decay rate r.

7. A radioactive material, such as the isotope thorium-
234, disintegrates at a rate proportional to the amount cur-
rently present. If Q(¢) is the amount present at time ¢, then
dQ/dt = —rQ, where r > 0 is the decay rate.

(a) If 100 milligrams (mg) of thorium-234 decays to 82.04
mg in 1 week, determine the decay rate r.

(b) Find an expression for the amount of thorium-234
present at any time ¢.

(¢) Find the time required for the thorium-234 to decay to
one-half its original amount,

8. Classical Mechanics. The differential equation for the
velocity v of an object of mass m, restricted to vertical

motion and subject only to the forces of gravity and air
resistance, is

m‘;—;) = —mg —yuv. (i)

In Eq. (G) we assume that the drag force, —yv where
7 >0 is a drag coefficient, is proportional to the velocity.




Acceleration due to gravity is denoted by g. Assume that the
upward direction is positive.

(a) Show that the solution of Eq. (i) subject to the initial con-
dition v(0) = vy is

v= (vo + %) erim - 8
Y Y

(b) Sketch some integral curves, including the equilibrium
solution, for Eq. (i). Explain the physical significance of the
equilibrium solution.

(¢) If aball is initially thrown in the upward direction so that
v > 0, show that it reaches its maximum height when

1%
t=zm“=ﬂln<1+z—°>.
4 mg

(d) The terminal velocity of a basehall dropped from a high
Lower is measured to be 33 m/s. 17 the mass of the baseball is
145 grams (g) and g = 9.8 m/s?, what is the value of y?

(e) Using the values form, g. and y in part (d), what would
be the maximum height attained for a baseball thrown up-
witrd with an initial velocity vy = 30 m/s from a height of
2 m above the ground?

9. For small, slowly falling objects, the assumption made in
Eq. (i) of Problem 8 that the drag force is proportional to
the velocity is a good one. For larger, more rapidly falling
objects, it is more accurale Lo assume that the drag force is
proportional Lo the square of the velocity.®

(a) Write a differential equation fo the velocity of a falling
object of mass m if the drag force is proportional to the square
of the velocity, Assume that the upward direction is positive.
(b) Determine the limiting velocity after a long time,

(€) 1 m = 0.025 kilograms (kg), find the drag coeflicient so
that the limiting velocity is =35 m/s.

Mixing Problems. Many physical systems can be cast in the
form of a mixing tank problem. Consider a tank containing
4 solution—a mixture of solute and solvent=such as salt dis-
salved in water, Assume that the solution al concentration
¢,(1) flows into the Lunk at a volume flow rate r, () and is si-
multaneously pumped out at the volume {low rate r, (). I the
solution in the tank is well mixed, then the coneentration of
the outflow is O()/V(1), where Q(1) is the amount of solute
at time 1 and V() is the volume of solution in the tank. The
differential equation that models the changing amount of so-
Jute in the tank is based on the principle of conservation of
mass,

d
—? = ¢,(Hr) - {QW/ VDY r,() . ©
—— hv—’. A
rate of change of Q(1) rate in rate out
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where V(f) also satisfies a mass conservation equation,

% =r;(t) = r,(0. (ii)

If the tank initially contains an amount of solute Qg in a vol-
ume of solution, Vj, then initial conditions for Egs. (i) and
(ii) are Q(0) = Q, and V(0) = V,, respectively.

10. A tank initially contains 200 liters (L) of pure water.
A solution containing 1 g/L enters the tank at a rate of 4
[/min, and the well-stirred solution leaves the tank at arate of
5 L/min. Write initial value problems for the amount of salt
in the tank and the amount of brine in the tank, at any time 1.

11. A tank contains 100 gallons (gal) of water and 50
ounces (0z) of salt. Water containing a salt concentration of
i(l + 12 sin f) vz/gal lows into the tank at a rate of 2 gal/min,
and the mixture flows oul at the same rate. Write an ini-
tial value problem for the amount of salt in the tank at any
time f.

12, A pond initially contains 1,000,000 gal of water and an
unknown amount of an undesirable chemical. Water contain-
ing 0.01 g of this chemical per gallon flows into the pond at
a rate of 300 gal/h. The mixture flows out at the same rate,
<o the amount of water in the pond remains constant. As-
sume that the chemical is uniformly distributed throughout
the pond.

(a) Write a differential equation for the amount of chemical
in the pond at any time.’

(b) How much of the chemical will be in the pond after a
very long time? Does this limiting amount depend on the
amount that was present initially?

13, Pharmacokineties. A simple model for the concentra-
tion C(f) of a drug administered to a patient is based on the
assumption that the rate of decrease of C(¢) is negatively pro-
portional to the amount present in the system,

dCy= —kC,
dt
where k is a rate constant that depends on the drug and its

value can be found experimentally.

(a) Suppose that a dose administered at time ¢ = 0 is rapidly
distributed throughout the body, resulting in an initial con-
centration C, of the drug in the patient. Find C(z), assuming
the initial condition €(0) = C,.

(b) Consider (he case where doses of Cy of the drug are given
atequal time intervals T, that is, doses of C, are administered
at times £ = 0, 7,27, ... . Denote by C, the concentration im-
mediately after the nth dose. Find an expression for the con-
centration C, immediately after the second dose.

(c) Find an expression for the concentration C, immediately
after the nth dose. What is lim, ,,, C,?
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14. A certain drug is being administered intravenously to a
hospital patient. Fluid containing 5 mg/cm?® of the drug en-
ters the patient’s bloodstream at a rate of 100 cm®/h. The drug
is absorbed by body tissues or otherwise leaves the blood-
stream at a rate proportional to the amount present, with a
rate constant of 0.4 (h)~!.

(a) Assuming that the drug is always uniformly distributed
throughout the bloodstream, write a differential equation for
the amount of the drug that is present in the bloodstream at
any time.

(b) How much of the drug is present in the bloodstream after
a long time?

Continuously Compounded Interest. The amount of
money P(¢) in an interest bearing account in which the prin-
cipal is compounded continuously at a rate » per annum
and in which money is continuously added, or subtracted,
at a rate of k dollars per annum satisfies the differential
equation

Lfi—f =rP+k @)

The case k < 0 corresponds to paying off a loan, while k > 0
corresponds to accumulating wealth by the process of regular
contributions to an interest bearing savings account.

15. Show that the solution to Eq. (i), subject to the initial
condition P(0) = P, is
P=(P0+’—‘)e”—5. (i)
r r
Use Eq. (ii) in Problem 15 to solve Problems 16 and 17.

16. According to the International Institute of Social History
(Amsterdam), the amount of money used to purchase Man-
hattan Island in 1626 is valued at $1,050 in terms of today’s

dollars. If that amount were instead invested in an account
that pays 4% per annum with continuous compounding, what
would be the value of the investment in 2020? Compare with
the case that interest is paid at 6% per annum.

17. How long will it take to pay off a student loan of $20,000
if the interest paid on the principal is 5% and the student pays
$200 per month. What is the total amount of money repaid
by the student?

18. Derive Eq. (ii) in Problem 15 from the discrete approx-
imation to the change in the principal that occurs during the
time interval [¢, t + Af],

P(t + An) = P(t) + (rADP(t) + kAt,

assuming that P(z) is continuously differentiable on ¢ > 0.
[Hint: Substitute P(t + Aty = P(r) + P'() At + (1/2)P" (})
(An)?), where ¢t <7 < t + Ay, simplify, divide by At, and let
Ar - 0.]

Miscellaneous Modeling Problems

19. A spherical raindrop evaporates at a rate proportional to
its surface area. Write a differential equation for the volume
of the raindrop as a function of time.

20. Archimedes’s principle of buoyancy states that an ob-
ject submerged in a fluid is buoyed up by a force equal to
the weight of the fluid displaced. An experimental, spheri-
cally shaped sonobuoy of radius 1/2 m with a mass m kg is
dropped into the ocean with a velocity of 10 m/s when it hits
the water. The sonobuoy experiences a drag force due to the
water equal to one-half its velocity. Write down a differential
equation describing the motion of the sonobuoy. Find val-
ues of m for which the sonobuoy will sink and calculate the
corresponding terminal sink velocity of the sonobuoy. The
density of seawater is p, = 1.025 kg/L.

1.2 Qualitative Methods: Phase Lines and
Direction Fields

In Section 1.1 we were able to find solutions of the differential equations

du
dt

— = —k(u—T,) and

dp_

=mp—k 1
v T (N

by using a simple integration technique. Do not assume that this is always possible. Finding
closed-form analytic solutions of differential equations can be difficult or impossible. For-
tunately, it is possible to obtain information about the qualitative behavior of solutions by
using elementary ideas from calculus and graphical methods; we consider two such meth-
ods in this section—phase line diagrams and direction fields.

Qualitative behavior refers to general properties of the differential equation and its
solutions such as existence of equilibrium points, behavior of solutions near equilibrium




