Some Applications of 2-D Systems of
Differential Equations



Examples:

> Salt in Tanks (a linear system)

» Population Model - Competing Species (a nonlinear system)



Example 1. Salt in Tanks (a linear system)

1.5 gal/min 1 gal/min
it STy
1 oz/gal > ' 3 oz/gal
P R
3 gal/min
Q,(?) oz salt — Q,(t) 0z salt
30 gal water :] 20 gal water
—_————— — —_————

Tan
2.5 gal/min

Question: Given initial condition
Q1(0) =55 0z, Q2(0) = 26 oz,

find ~ Q1(t), Qa2(t).



Example 1. (continued. Set up equations.)

1.5 gal/min 1 gal/min
— e 2
1 oz/gal » f 3 oz/gal

T
3 gal/min
Q,(#) oz salt — Q,(2) 0z salt
30 gal water S 20 gal water
———— —— == —— e —
- ~ =+ 1.5gal/min - -

Tank
2.5 gal/min

Differential Equations - based on the conservation law

(rate of change of salt in a tank) = (rate of salt in) — (rate of salt out)



Example 1. (continued. Set up equations.)

1.5 gal/min 1 gal/min
— —
1 oz/gal . . 3 oz/gal

S
3 gal/min
Q,(t) oz salt S Q,(t) oz salt
30 gal water S 20 gal water
—_——— — —— —— i —
= — =+ 1.5gal/min - -

Tank 1 Tank 2

2.5 gal/min

Differential Equations - based on the conservation law

(rate of change of salt in a tank) = (rate of salt in) — (rate of salt out)

Tank 1: Qj(t)=15x1 +1.5x Q;—(()t) —-3x Q;—ét) (0z/min)



Example 1. (continued. Set up equations.)

1.5 gal/min 1 gal/min
— —
1 oz/gal \ 4 3 oz/gal

S
3 gal/min
Q,(t) oz salt S Q,(t) oz salt
30 gal water S 20 gal water
—_——— — —— _————
= — =+ 1.5gal/min - —

Tank 1 Tank 2

2.5 gal/min

Differential Equations - based on the conservation law

(rate of change of salt in a tank) = (rate of salt in) — (rate of salt out)

Q2(t)
20

Tank 2: Q5(t) =1x3+3x Q?l)(()t)

—(1.5+2.5) x (0z/min)



Example 1. (continued)

The System Q) = —-01Q;+0075Q2+1.5
of Diff Egs Q, = 01Q1-02Q2+3
! —0.1 0.075 1.5
The Matrix Form @ = @ +
Qh 0.1 —-02||Q2 3




Example 1. (continued)

The System Q) = —-01Q;+0075Q2+1.5
of Diff Eqgs Q) 01Q1—-02Q2+3

o) [7]

(04 —0.1 0.075
The Matrix Form =
0.1 -0.2

Q5
—0.1 0.075| |@Q1 1.5
Equilibrium: +
0.1 —-02|1]Q2 3




Example 1. (continued)

The System Q) = —-01Q1+0075Q2+1.5
of Diff Eqgs Q5 01Q1—-02Q2+3
! —0.1 0.075 1 [15]
The Matrix Form @ = @ +
Q) 0.1  —02]|Q2 |3
—0.1 0.075] [Q1 1.5 0 Q1] [42
Equilibrium: + = =
01 —0.2] Q- 3 0 Q2] 36




Example 1. (continued)

—0.1 Q1 +0.075 Q2+ 1.5

Qy = 010Q1—-02Q2+3

The System o
of Diff Egs

Q1] [1.5]

Q) —0.1 0.075
The Matrix Form =
Q2] 3

Q, 01 —0.2

—0.1 0.075] [Q1 1.5 0 Q1] [42
Equilibrium: + = = =
0.1  —02] |Q 3 0 Q) 36

(@] [-01 0.075 )
System Recasted @ — Q1
| Q2 0.1 —0.2] |Qs—36



Example 1. (continued)

2-D System
1/ . R
Q' -4(q-a)
Q] [-01 0.075
Qy |01 —02

I

Q1 —42
Q2 — 36

|

The coefficient matrix

—-0.1 0.075
A =
0.1 -0.2

The equilibrium

= o) = %)




Example 1. (continued)

2-D System

Q-4(q-a)

Q] [-01 0.075] [@Q —42
Qyl |01 —02||Q,—36

The coefficient matrix

—-0.1 0.075
A =
0.1 -0.2

The equilibrium

= o) = %)

Eigenvalues & Eigenvectors of A:

M= —005, W= B} :

Ay = —0.25, wgz[l}.




Example 1. (continued)

2-D System

Q-4(q-a)

Q] [-01 0.075] [@Q —42
Qyl |01 —02||Q,—36

The coefficient matrix

—-0.1 0.075
A =
0.1 -0.2

The equilibrium

= o) = %)

Eigenvalues & Eigenvectors of A:

A= —0.05, Wy = g} :

Ay = —0.25, wgz[l}.

—2

General Solutions:

{Ql(t)} _ [42_ + e 005t [3} + Cpe 025 { 1 }
2

Qa(t)| ~ |36]

-2



Example 1. (continued)

General Solutions:

0= (3] - 8] e [ e[

Equilibrium (42,36) is an Attractive

Improper Node
80 4

1
70
60<
50

0, 40 4

304

201

0O 10 20 30 40 50 60 70 80
9



Example 1. (continued. Initial Value Problem)

A-[0 el (e - )



Example 1. (continued. Initial Value Problem)

A-[0 el (e - )

Gen. sots: (1) = [21(1] = [2] +crevon [f e cpemomn [ 1]



Example 1. (continued. Initial Value Problem)

A-[0 el (e - )
Gen. Sols: Q(t) = [g;gﬂ - [ga +Cpem005 ﬂ + Cpe 025 [ 1}

Initial Condition:
42 3 1 55
o]+ 5]+ e[ 5] < 3]

=la] -1



Example 1. (continued. Initial Value Problem)

R ke | vt R

Qy ~ 101 —0.2]|Q,—36 Q2(0) 26
. A @) _ 42 —0.05¢t |3 —o2st | 1
Gen. Sols: Q(t) = |:Q2(t) = |36 +Che 9 +Cse _9
Initial Condition:
50 0,(1)
42 3 1 55
R H R I B
Ch — 2 30—%(/)
—[a] =[] z
20+ T T T t‘
0 10 20 30 40

Solution: {g;gg] = [32] + 2¢70-05 B} + 7e=0-25¢ [_12]



Examples:

> Salt in Tanks (a linear system)

» Population Model - Competing Species (a nonlinear system)



Logistic Model of Population Dynamics Verhulst (1838)

P
/ _

where r is the net per capita growth rate when P =~ 0,
K is the carrying capacity.

K P(0)

Solution Formula: P(t) = PO) 1K = PO)]e—
— e ™

Example. P’ =6P(1— P/2) (r=6, K=2)
3 9
Phase portrait kk
P(t)
@ @ 11
Equilibrium P =0 is unstable. r T
-2 -1 0 1
Equilibrium P = K is asymp stable. t
All positive solutions P(¢) converge to K as -l
t— o0,




Logistic Dynamics of Two Species

) =x1(6 — 32
If no interactions: { ! ( )




Logistic Dynamics of Two Species

x) = x1(6 — 3z1) lmy oo 21(t) = 2

If no interactions: , -
ah = x9(3 — 2x9) limg—, o0 2(t) = 3/2

Phase portraits on axes

X
2

1.5@




Logistic Dynamics of Two Species

x) = x1(6 — 3xz1) lmy oo 21 (t) = 2

If no interactions: , -
ah = x9(3 — 2x9) limy 00 22(t) = 3/2

Nonlinear Dynamics

-




Logistic Dynamics of Two Species

x) = x1(6 — 3xz1) lmy oo 21 (t) = 2

If no interactions: , -
ah = x9(3 — 2x9) limy 00 22(t) = 3/2

Nonlinear Dynamics

-\

X




Example 3. Logistic Growth & Competition
Lotka (1925), Volterra (1926), Gause (1934), ------

With Competition:

{ 2y =x1(6 —3zy —2x9 ) Zo reduces the growth of z;

Th = 29(3 — 2z9  —@1 21 reduces the growth of xo
2



Example 3. Logistic Growth & Competition
Lotka (1925), Volterra (1926), Gause (1934), ------
With Competition:

{ 2y =x1(6 —3zy —2x9 ) Zo reduces the growth of z;

ah =x9(3 —2x9  —;1 ) 21 reduces the growth of xo

Basic Questions:

» Find equilibria. (i.e., time independent solutions)

v

Construct a linear approximating system near each equilibrium.
(use the Jacobian matrix, that is, partial derivatives)

v

Study the linear approximating dynamics near the equilibrium.
(use eigenvalues & eigenvectors)

v

Determine the nonlinear dynamics near the equilibrium.
(if eigenvalues are # 0 & are not purely imaginary, Yes We Can!)



Example 3. (Continued. Find equilibria.)

Competing Species:

r) = x1(6 — 3z — 229) fi(z1,2) = 21(6 — 31 — 222)
ry = 12(3 — 21 — 222) fa(x1,22) = 22(3 — 21 — 2x2)



Example 3. (Continued. Find equilibria.)

Competing Species:

ry = 1(6 — 371 — 229) fi(z1,22) = 21(6 — 371 — 272)
33‘/2 :.132(3—.231 —Ql‘z) fg(xl,l‘g) 21‘2(3—1‘1 —233‘2)
Equilibria:

LE1(6—3£II1 —21‘2) =0
I2(3*I1 72:E2) =0



Example 3. (Continued. Find equilibria.)

Competing Species:

{ ry = 1(6 — 371 — 229) fi(z1,22) = 21(6 — 371 — 272)
33‘/2 :.132(3—.231 —2.%‘2) fg(ﬂ?l,l‘g) 21‘2(3—1‘1 —21‘2)
Equilibria:

{ 21(6 = 321 — 225) = 0 = Separate to four combinations

I2(3 — X — 2:E2) =0

IE1:O 673.%1722’,‘2:0
SEQZO 1‘220

1 =0 6 —3x1 —2x9=0
3—$1—2$2:0 3—1‘1—21}2:0



Example 3. (Continued. Find equilibria.)

Competing Species:

{ ry = 1(6 — 371 — 229) fi(z1,22) = 21(6 — 371 — 272)
33‘/2 :.132(3—.231 —2.%‘2) fg(ﬂ?l,l‘g) 21‘2(3—1‘1 —21‘2)
Equilibria:

{ 21(6 = 321 — 225) = 0 = Separate to four combinations

I2(3 — X — 2:E2) =0

IE1:O 673.%1722’,‘2:0
SEQZO 1‘220

1 =0 6 —3x1 —2x9=0
3—$1—2$2:0 3—1‘1—21}2:0

Four equilibria:

(l’l,l’g) = (070)a (270)3 (03%)3 (%7%)



Example 3. (continued. Linear Approximation)
Competing Species:

{ CUll :$1(673£L’1 721’2) fl(xl,l'g) :1'1(673.%172.%2)
xh = 29(3 — x1 — 2x9) folxy, @) = 22(3 — 21 — 229)

Linear Approximating System near equilibrium (%, %):



Example 3. (continued. Linear Approximation)
Competing Species:

{ CUll :$1(673£L’1 721’2) fl(xl,l'g) :1'1(673.%172(52)
xh = 29(3 — x1 — 2x9) folxy, @) = 22(3 — 21 — 229)

Linear Approximating System near equilibrium (%, %):

e Prepare the Jacobian matrix:

J = df1/0x1 Of1/0x2| _ |6 —6x1 — 279 —2x4
- |0f2/0x1 Of2)0xa| —T 33—z —4day



Example 3. (continued. Linear Approximation)
Competing Species:

{ CUll :$1(673£L’1 721’2) fl(xl,l'g) :1'1(673.%172(52)
xh = 29(3 — x1 — 2x9) folxy, @) = 22(3 — 21 — 229)

Linear Approximating System near equilibrium (%, %):
e Prepare the Jacobian matrix:

J = |:3f1/31‘1 6f1/85€2:| _ |:6—61‘1 —21?2 —2:131
B 5’f2/3$1 af2/a$2 o

—X2 37()’]1 74!172



Example 3. (continued. Linear Approximation)
Competing Species:

{ CUll :$1(673£L’1 721’2) fl(xl,l'g) :1'1(673.%172.%2)
xh = 29(3 — x1 — 2x9) folxy, @) = 22(3 — 21 — 229)

Linear Approximating System near equilibrium (%, %):

e Prepare the Jacobian matrix:

J = |:3f1/31‘1 6f1/35€2:| _ |:6 — 61‘1 — 21?2 —2:1?1

0f2/0xy 0Of2/0xs —Z3 3— 21 —4dxo
e Evaluate J at equilibrium (z1,22) = (3, 3):
-9 _3
(ol g1
T4 2

e The Linear Approximating System near equilibrium (%7 %):

Jo T



Example 3. Linear dynamics near (0,0)

The Linear Approximating
System near equilibrium (0, 0):

=103l B



Example 3. Linear dynamics near (0,0)

The Linear Approximating
System near equilibrium (0, 0):

-0 sl
ah 0 3| |x2
Eigenvalues & Eigenvectors:

>\1 = 67 Vvl = |:(:;:|

-t

>
[\v]

I
ad
s



Example 3. Linear dynamics near (0,0)

Linear Approx Dynamics Near (0,0)

The Linear Approximating
System near equilibrium (0, 0):

IRTC

0 3 X9

Eigenvalues & Eigenvectors: / ——>

, S—
AL =6, vvlz[o}
10
27 1

>
0

ad
s

Equilibrium (0, 0) is
a repulsive improper node.



Example 3. Linear dynamics near (2,0)

The Linear Approximating
System near equilibrium (2,0):

sl



Example 3. Linear dynamics near (2,0)

The Linear Approximating
System near equilibrium (2, 0):

sl

Eigenvalues & Eigenvectors:



Example 3. Linear dynamics near (2,0)

Linear Approx Dynamics Near (2,0)

The Linear Approximating
System near equilibrium (2,0):

Ibll . -6 —4 Ty — 2
SC/Q o 0 1 T2
Eigenvalues & Eigenvectors:

M= —6, Wy = H

Q/
,_,4
— 1
s

Equilibrium (2, 0) is a saddle



Example 3. Linear dynamics near (0, :

The Linear Approximating
System near equilibrium (0, %)

IR P



Example 3. Linear dynamics near (0, :

The Linear Approximating
System near equilibrium (0, %)

R e P

Eigenvalues & Eigenvectors:

M =3, W= [_14]

Ny = =3, Wy = m



Example 3. Linear dynamics near (0, 2)

Linear Approx Dynamics Near (0,3/2)
The Linear Approxnnatmg Jj
System near equilibrium (0
il 3 0 1 >
ah| -2 3] |w2—3 |

Eigenvalues & Eigenvectors:

2
A= 3, V_R}l o
)\2 3 W2

Equilibrium (0, 2) is a saddle




Example 3. Linear dynamics near (3

=~

)

Y

The Linear Approximating System

near equilibrium (2, 3):

BN [ |
TARE I [



Example 3. Linear dynamics near (

The Linear Approximating System

near equilibrium (2, 3):

.
TARE I [

Eigenvalues & Eigenvectors:

A =-3+3V2~-088

. 2
Wl__—l—\/i_

Ay =-3-3v2~ 512
L2 ]
V2T o142

\GJ[OV)
=~



Example 3. Linear dynamics near (

The Linear Approximating System

301

BN [ |
TARE I [

Eigenvalues & Eigenvectors:

near equilibrium (

A =-3+3V2~-088

. 2
Wl__—l—\/i_

Ay =-3-3v2~ 512
L2 ]
V2T o142

\GJ[OV)
=~
~—

Linear Approx Dynamics Near (3/2, 3/4)

4

\
J

,%

b

Equilibrium (2, 2) is

an attractive improper node.



Example 3. Global phase portrait

Nonlinear Dynamics




Example 3. Discussion

Nonlinear Dynamics




Example 3. Discussion

» The survival-extinction states
(2,0) and (0, 3) are unstable.

Nonlinear Dynamics




Example 3. Discussion

» The survival-extinction states
(2,0) and (0, 3) are unstable.

» The co-existence state (2,2) is
asymptotically stable.

Nonlinear Dynamics




Example 3. Discussion

» The survival-extinction states
(2,0) and (0, 3) are unstable.

» The co-existence state (2,2) is
asymptotically stable.

» All positive solutions converge to

the co-existence state (3, 3).

Nonlinear Dynamics




Example 3. Discussion

» The survival-extinction states
(2,0) and (0, 3) are unstable. Nonlinear Dynamics

» The co-existence state (2,2) is
asymptotically stable.

» All positive solutions converge to

the co-existence state (3, 3).

» A change of the initial
populations does not affect the

eventual convergence to the 1

co-existence state (3, 3).




Example 3. Discussion

» The survival-extinction states
(2,0) and (0, 3) are unstable. Nonlinear Dynamics

» The co-existence state (2,2) is
asymptotically stable.

» All positive solutions converge to

the co-existence state (3, 3).

» A change of the initial
populations does not affect the

eventual convergence to the 1

co-existence state (3, 3).

Question: Why is the co-existence stable in this system?



Example 3. Discussion

» The survival-extinction states
(2,0) and (0, 3) are unstable. Nonlinear Dynamics

» The co-existence state (2,2) is
asymptotically stable.

» All positive solutions converge to

the co-existence state (3, 3).

» A change of the initial
populations does not affect the

eventual convergence to the 1

co-existence state (3, 3).

Question: Why is the co-existence stable in this system?

Answer: Weak competition.



Example 3. (continued. Weak competition)

Nonlinear Dynamics

{ 2 =x1(6 —3x; —2x9 )

xh=x9(3 —m3 —2x9 )

The competition terms
—21‘2 and —X1




Example 3. (continued.

xfy =x1(6 =3y —2x9 )
xh=x9(3 —m3 —2x9 )
The competition terms
—2:[,‘2 and —X1

e “weallon” Hham

the resource inhibition terms
—3x1 and —2xo

Weak competition)

Nonlinear Dynamics




Example 4. Strong Competition Model.

Competing Species:

{ =213 —z1 —2my ) 9 reduces the growth of z

wh=x2(2 =11 —12) x1 reduces the growth of xo



Example 4. Strong Competition Model.

Competing Species:

=113 —x1 —2z9 ) 2o reduces the growth of
xh =192 —x1 —x9) x1 reduces the growth of x5
Equilibria:

21(3 =21 = 25) = 0 — Separate to four combinations
1‘2(2 — 1 — 1‘2) =0

x1 =0 3—x1 —2x9=0
56‘2:0 .’132:0

1‘1:0 3—1‘1—21}2:0
2—1‘1—$2=0 2—331—31‘2:0

Four equilibria: (x1,22) = (0,0), (3,0), (0,2), (1,1).



Example 4. Linear dynamics near (0,0)
Linear Approx Dynamics Near (0,0)

The Linear Approximating

System near equilibrium (0, 0): 7
/ { ~
Ty 3 0 [z A\ / e
zh| |0 2| |xe \ \
‘ /
Eigenvalues & Eigenvectors: \ // e _—
. 1 S ——
)\1 = 3, Wi = |:0:| x
- 0
/\2 = 2, Wo — |:1:| 5

Equilibrium (0, 0) is
a repulsive improper node.



Example 4. Linear dynamics near (3,0)

Linear Approx Dynamics Near (3,0)

The Linear Approximating %
System near equilibrium (3, 0): /

zy| _ |-3 —6] [z1—3
x| |0 -1 To
Eigenvalues & Eigenvectors:

AN=3, W= H

|

Equilibrium (3,0) is
an attractive improper node



Example 4. Linear dynamics near (0, 2)
Linear Approx Dynamics Near (0,2)

The Linear Approximating \
System near equilibrium (0, 2): Y ‘

ERERA RN ¥

Eigenvalues & Eigenvectors:

vl

Equilibrium (0, 2) is
an attractive improper node

=3




Example 4. Linear dynamics near (1,1)

The Linear Approximating System
near equilibrium (1, 1) . Linear Approx Dynamics Near (1,1)

R

Eigenvalues & Eigenvectors:

S/
/£

X \\\\\‘
N\
)

W
s
/.

M=-1+v2>0

)\22—1—\/§<0

NG
W2 = [ﬂ Equilibrium (1,1) is a saddle



Example 4. Global phase portrait

Nonlinear Dynamics

—
——

—

P

X



Example 4.

Discussion

Nonlinear Dynamics

ol 1 2




Example 4. Discussion

» The survival-extinction states
(3,0) and (0,2) are both
asymptotically stable.

Nonlinear Dynamics

ol




Example 4. Discussion

» The survival-extinction states
(3,0) and (0,2) are both
asymptotically stable.

» The co-existence state (1,1) is
unstable.

Nonlinear Dynamics

ol




Example 4. Discussion

» The survival-extinction states
(3,0) and (0,2) are both

Nonlinear Dynamics

asymptotically stable. v
» The co-existence state (1,1) is s
unstable.
X, 2
» Almost all positive solutions A
converge to either (3,0) or (0,2). 1

ol 1 2




Example 4. Discussion

» The survival-extinction states
(3,0) and (0,2) are both

Nonlinear Dynamics

asymptotically stable. v
» The co-existence state (1,1) is s
unstable.
X, 2
» Almost all positive solutions A
converge to either (3,0) or (0,2). 1

i : :
» A small difference in the initial ° ! 2
conditions may make a huge

difference in a species’ destiny.




Example 4. (continued. Strong competition)
Question: Why is the co-existence unstable in this system?

Answer: Strong competition.

Nonlinear Dynamics

A\
N

ol 1 2 3




Example 4. (continued. Strong competition)
Question: Why is the co-existence unstable in this system?

Answer: Strong competition.

Nonlinear Dynamics

ZU,I 21‘1( 3 —I1 —21‘2 ) \'4
th=x9(2 —m —x2 ) 3
The competition terms
x, 2
—2x9 and —a; 2
N

Y
N

ol 1 2 3




Example 4. (continued. Strong competition)
Question: Why is the co-existence unstable in this system?

Answer: Strong competition.

Nonlinear Dynamics

¥y =x1(3 —x1 —2x9 ) \ 4
th=x9(2 —m —x3 ) 3
The competition terms
—2x9 and —a; % 2
w ” /\
ARE STRoONGER THAN 1

the resource inhibition terms
—x1 and —xa ol p P 3

Y
N
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