
Some Applications of 2-D Systems of

Di↵erential Equations



Examples:

I
Salt in Tanks (a linear system)

I

I
Population Model - Competing Species (a nonlinear system)



Example 1. Salt in Tanks (a linear system)

Question: Given initial condition

Q1(0) = 55 oz, Q2(0) = 26 oz,

find Q1(t), Q2(t).



Example 1. (continued. Set up equations.)

Di↵erential Equations - based on the conservation law

(rate of change of salt in a tank) = (rate of salt in)� (rate of salt out)



Example 1. (continued. Set up equations.)

Di↵erential Equations - based on the conservation law

(rate of change of salt in a tank) = (rate of salt in)� (rate of salt out)

Tank 1: Q0
1(t) = 1.5⇥ 1 +1.5⇥ Q2(t)

20

� 3⇥ Q1(t)

30

(oz/min)



Example 1. (continued. Set up equations.)

Di↵erential Equations - based on the conservation law

(rate of change of salt in a tank) = (rate of salt in)� (rate of salt out)

Tank 2: Q0
2(t) = 1⇥ 3+3⇥ Q1(t)

30

� (1.5+2.5)⇥ Q2(t)

20

(oz/min)



Example 1. (continued)

The System

of Di↵ Eqs

(
Q0

1 = �0.1 Q1 + 0.075 Q2 + 1.5

Q0
2 = 0.1 Q1 � 0.2 Q2 + 3

The Matrix Form

"
Q0

1

Q0
2

#
=

"
�0.1 0.075

0.1 �0.2

# "
Q1

Q2

#
+

"
1.5

3

#

Equilibrium:

"
�0.1 0.075

0.1 �0.2

# "
Q1

Q2

#
+

"
1.5

3

#
=

"
0

0

#

)
"
Q1

Q2

#
=

"
42

36

#

System Recasted

"
Q0

1

Q0
2

#
=

"
�0.1 0.075

0.1 �0.2

# "
Q1 � 42

Q2 � 36

#
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Example 1. (continued)

2-D System The coe�cient matrix

~
Q

0
= A

⇣
~
Q� ~

a

⌘
A =

"
�0.1 0.075

0.1 �0.2

#

"
Q0

1

Q0
2

#
=

"
�0.1 0.075

0.1 �0.2

# "
Q1 � 42

Q2 � 36

#
The equilibrium

~
a =


a1

a2

�
=


42

36

�

Eigenvalues & Eigenvectors of A:

�1 = �0.05, ~
w1 =


3

2

�
; �2 = �0.25, ~

w2 =


1

�2

�
.

General Solutions:


Q1(t)
Q2(t)

�
=


42

36

�
+ C1e

�0.05t


3

2

�
+ C2e

�0.25t


1

�2

�
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Example 1. (continued)

General Solutions:

~
Q(t) =


Q1(t)
Q2(t)

�
=


42

36

�
+ C1e

�0.05t


3

2

�
+ C2e

�0.25t


1

�2

�



Example 1. (continued. Initial Value Problem)


Q0

1

Q0
2

�
=


�0.1 0.075

0.1 �0.2

� 
Q1 � 42

Q2 � 36

�
,


Q1(0)

Q2(0)

�
=


55

26

�
.

Gen. Sols:

~
Q(t) =


Q1(t)
Q2(t)

�
=


42

36

�
+C1e

�0.05t


3

2

�
+C2e

�0.25t


1

�2

�

Initial Condition:


42

36

�
+ C1


3

2

�
+ C2


1

�2

�
=


55

26

�

=)

C1

C2

�
=


2

7

�

Solution:


Q1(t)
Q2(t)

�
=


42

36

�
+ 2e�0.05t


3

2

�
+ 7e�0.25t


1

�2

�
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Examples:

I Salt in Tanks (a linear system)

I

I Population Model - Competing Species (a nonlinear system)



Logistic Model of Population Dynamics Verhulst (1838)

P

0 = rP

✓
1� P

K

◆

where r is the net per capita growth rate when P ⇡ 0,
K is the carrying capacity.

Solution Formula: P (t) =
KP (0)

P (0) + [K � P (0)]e�rt

Example. P

0 = 6P (1� P/2) (r = 6, K = 2)



Logistic Dynamics of Two Species

If no interactions:

(
x

0
1 = x1(6� 3x1)

x

0
2 = x2(3� 2x2)

=)
limt!1 x1(t) = 2

limt!1 x2(t) = 3/2
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Logistic Dynamics of Two Species

If no interactions:

(
x

0
1 = x1(6� 3x1)

x

0
2 = x2(3� 2x2)

=)
limt!1 x1(t) = 2

limt!1 x2(t) = 3/2



Example 3. Logistic Growth & Competition

Lotka (1925), Volterra (1926), Gause (1934), · · · · · ·

With Competition:

(
x

0
1 = x1(6� 3x1 �2x2 )

x

0
2 = x2(3� 2x2 �x1 )

x2 reduces the growth of x1

x1 reduces the growth of x2

Basic Questions:

I Find equilibria. (i.e., time independent solutions)

I Construct a linear approximating system near each equilibrium.
(use the Jacobian matrix, that is, partial derivatives)

I Study the linear approximating dynamics near the equilibrium.
(use eigenvalues & eigenvectors)

I Determine the nonlinear dynamics near the equilibrium.
(if eigenvalues are 6= 0 & are not purely imaginary, Yes We Can!)
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Example 3. (Continued. Find equilibria.)

Competing Species:

⇢
x

0
1 = x1(6� 3x1 � 2x2)

x

0
2 = x2(3� x1 � 2x2)

����
f1(x1, x2) = x1(6� 3x1 � 2x2)
f2(x1, x2) = x2(3� x1 � 2x2)

Equilibria:

⇢
x1(6� 3x1 � 2x2) = 0
x2(3� x1 � 2x2) = 0

=) Separate to four combinations

⇢
x1 = 0
x2 = 0

⇢
6� 3x1 � 2x2 = 0
x2 = 0

⇢
x1 = 0
3� x1 � 2x2 = 0

⇢
6� 3x1 � 2x2 = 0
3� x1 � 2x2 = 0

Four equilibria:

(x1, x2) = (0, 0), (2, 0), (0, 3
2 ), ( 32 ,

3
4 ).



Example 3. (Continued. Find equilibria.)

Competing Species:

⇢
x

0
1 = x1(6� 3x1 � 2x2)

x

0
2 = x2(3� x1 � 2x2)

����
f1(x1, x2) = x1(6� 3x1 � 2x2)
f2(x1, x2) = x2(3� x1 � 2x2)

Equilibria:

⇢
x1(6� 3x1 � 2x2) = 0
x2(3� x1 � 2x2) = 0

=) Separate to four combinations

⇢
x1 = 0
x2 = 0

⇢
6� 3x1 � 2x2 = 0
x2 = 0

⇢
x1 = 0
3� x1 � 2x2 = 0

⇢
6� 3x1 � 2x2 = 0
3� x1 � 2x2 = 0

Four equilibria:

(x1, x2) = (0, 0), (2, 0), (0, 3
2 ), ( 32 ,

3
4 ).



Example 3. (Continued. Find equilibria.)

Competing Species:

⇢
x

0
1 = x1(6� 3x1 � 2x2)

x

0
2 = x2(3� x1 � 2x2)

����
f1(x1, x2) = x1(6� 3x1 � 2x2)
f2(x1, x2) = x2(3� x1 � 2x2)

Equilibria:

⇢
x1(6� 3x1 � 2x2) = 0
x2(3� x1 � 2x2) = 0

=) Separate to four combinations

⇢
x1 = 0
x2 = 0

⇢
6� 3x1 � 2x2 = 0
x2 = 0

⇢
x1 = 0
3� x1 � 2x2 = 0

⇢
6� 3x1 � 2x2 = 0
3� x1 � 2x2 = 0

Four equilibria:

(x1, x2) = (0, 0), (2, 0), (0, 3
2 ), ( 32 ,

3
4 ).



Example 3. (Continued. Find equilibria.)

Competing Species:

⇢
x

0
1 = x1(6� 3x1 � 2x2)

x

0
2 = x2(3� x1 � 2x2)

����
f1(x1, x2) = x1(6� 3x1 � 2x2)
f2(x1, x2) = x2(3� x1 � 2x2)

Equilibria:

⇢
x1(6� 3x1 � 2x2) = 0
x2(3� x1 � 2x2) = 0

=) Separate to four combinations

⇢
x1 = 0
x2 = 0

⇢
6� 3x1 � 2x2 = 0
x2 = 0

⇢
x1 = 0
3� x1 � 2x2 = 0

⇢
6� 3x1 � 2x2 = 0
3� x1 � 2x2 = 0

Four equilibria:

(x1, x2) = (0, 0), (2, 0), (0, 3
2 ), ( 32 ,

3
4 ).



Example 3. (continued. Linear Approximation)

Competing Species:

⇢
x

0
1 = x1(6� 3x1 � 2x2)

x

0
2 = x2(3� x1 � 2x2)

����
f1(x1, x2) = x1(6� 3x1 � 2x2)

f2(x1, x2) = x2(3� x1 � 2x2)

Linear Approximating System near equilibrium ( 32 ,
3
4 ):

• Prepare the Jacobian matrix:

J =


@f1/@x1 @f1/@x2

@f2/@x1 @f2/@x2

�
=


6� 6x1 � 2x2 �2x1

�x2 3� x1 � 4x2

�

• Evaluate J at equilibrium (x1, x2) = ( 32 ,
3
4 ):

J =


� 9

2 �3

� 3
4 � 3

2

�

• The Linear Approximating System near equilibrium ( 32 ,
3
4 ):


x

0
1

x

0
2

�
=


� 9

2 �3

� 3
4 � 3

2

� 
x1 � 3

2

x2 � 3
4

�
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Example 3. Linear dynamics near (0, 0)

The Linear Approximating
System near equilibrium (0, 0):


x

0
1

x

0
2

�
=


6 0
0 3

� 
x1

x2

�
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Example 3. Global phase portrait



Example 3. Discussion

I The survival-extinction states
(2, 0) and (0, 3

2 ) are unstable.

I The co-existence state ( 32 ,
3
4 ) is

asymptotically stable.

I All positive solutions converge to
the co-existence state ( 32 ,

3
4 ).

I A change of the initial
populations does not affect the
eventual convergence to the
co-existence state ( 32 ,

3
4 ).

Question: Why is the co-existence stable in this system?

Answer: Weak competition.
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Example 3. (continued. Weak competition)
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The competition terms
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
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�
> 0 ) Weak competition ) Stable co-existence
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Example 4. Strong Competition Model.

Competing Species:

(
x

0
1 = x1(3 � x1 �2x2 )

x

0
2 = x2(2 �x1 � x2 )

x2 reduces the growth of x1

x1 reduces the growth of x2

Equilibria:

⇢
x1(3� x1 � 2x2) = 0
x2(2� x1 � x2) = 0

=) Separate to four combinations

⇢
x1 = 0
x2 = 0

⇢
3� x1 � 2x2 = 0
x2 = 0

⇢
x1 = 0
2� x1 � x2 = 0

⇢
3� x1 � 2x2 = 0
2� x1 � x2 = 0

Four equilibria: (x1, x2) = (0, 0), (3, 0), (0, 2), (1, 1).
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Example 4. Linear dynamics near (0, 0)

The Linear Approximating
System near equilibrium (0, 0):
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Example 4. Linear dynamics near (3, 0)

The Linear Approximating
System near equilibrium (3, 0):
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Example 4. Linear dynamics near (0, 2)

The Linear Approximating
System near equilibrium (0, 2):

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Equilibrium (0, 2) is
an attractive improper node



Example 4. Linear dynamics near (1, 1)

The Linear Approximating System
near equilibrium (1, 1):


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
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x2 � 1
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Eigenvalues & Eigenvectors:

�1 = �1 +
p
2 > 0
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
�
p
2

1

�

�2 = �1�
p
2 < 0

~w2 =

p
2
1

�

Equilibrium (1, 1) is a saddle



Example 4. Global phase portrait



Example 4. Discussion

I The survival-extinction states
(3, 0) and (0, 2) are both
asymptotically stable.

I The co-existence state (1, 1) is
unstable.

I Almost all positive solutions
converge to either (3, 0) or (0, 2).

I A small difference in the initial
conditions may make a huge
difference in a species’ destiny.
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Example 4. (continued. Strong competition)

Question: Why is the co-existence unstable in this system?

Answer: Strong competition.

det


1 2
1 1

�
< 0 ) Strong competition )

⇢
One species survives,
the other extincts.
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