Phase Portraits of 2-D Linear Systems with Zero Eigenvalue

For each of the following systems,

- Find general solutions;
- skecth the phase portrait;
- determine whether the equilibrium $(x, y)=(0,0)$ is stable or unstable;
- determine whether the equilibrium $(x, y)=(0,0)$ is asymptotically stable.
[1] $x^{\prime}=x-2 y, \quad y^{\prime}=3 x-6 y$.
[2] $x^{\prime}=-x+2 y, \quad y^{\prime}=-3 x+6 y$.
[3] $x^{\prime}=-2 x-4 y, \quad y^{\prime}=x+2 y$.

Abstract

Answers [1] General solutions: $\left[\begin{array}{l}x \\ y\end{array}\right]=C_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+C_{2} e^{-5 t}\left[\begin{array}{l}1 \\ 3\end{array}\right]$. $(x, y)=(0,0)$ is stable but is not asymptotically stable.

In the phase portrait below, every point on the green line is an equilibrium solution.

Attractive_line_of_equilibria

[2] General solutions: $\left[\begin{array}{l}x \\ y\end{array}\right]=C_{1}\left[\begin{array}{l}2 \\ 1\end{array}\right]+C_{2} e^{5 t}\left[\begin{array}{l}1 \\ 3\end{array}\right]$.
$(x, y)=(0,0)$ is unstable and (hence automatically) is not asymptotically stable.
In the phase portrait below, every point on the green line is an equilibrium solution.

Repulsive_line_of_equilibria

[3] General solutions: $\left[\begin{array}{l}x \\ y\end{array}\right]=C_{1}\left[\begin{array}{c}-2 \\ 1\end{array}\right]+C_{2}\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]+t\left[\begin{array}{c}-2 \\ 1\end{array}\right]\right)$.
$(x, y)=(0,0)$ is unstable and is not asymptotically stable.
In the phase portrait below, every point on the green line is an equilibrium solution.

Laminated_flow

