Solution Structures of 2nd Order Linear and Nonlinear Diff Eqs

[1] Given the fact that $y_{1}=0$ is a particular solution of a homogeneous linear equation $y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$:
(a) Can you produce two other solutions of this differential equation?
(b) Can you find all solutions of this differential equation?
[2] Suppose that $y_{1}=-5 e^{3 \sin 2 x}$ is a particular solution of a homogeneous linear equation $y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$.
(a) Can you produce two other solutions of this differential equation?
(b) Can you find all solutions of this differential equation?
[3] Suppose that $y_{1}=-5 e^{-2 x}$ and $y_{2}=e^{-2 x}$ are particular solutions of a homogeneous linear equation $y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$.
(a) Can you produce two other solutions of this differential equation?
(b) Can you find all solutions of this differential equation?
[4] Suppose that $y_{1}=-5 e^{3 x}$ and $y_{2}=e^{-2 x}$ are particular solutions of a homogeneous linear equation $y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$.
(a) Can you produce two other solutions of this differential equation?
(b) Can you find all solutions of this differential equation?
[5] Can some homogeneous linear equation $y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ have the following two functions, $y_{1}=e^{2 x}$ and $y_{2}=e^{-x}$, as particular solutions?
[6] Can some homogeneous linear equation $y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ have the following three functions, $y_{1}=e^{2 x}, y_{2}=e^{x}$, and $y_{3}=x e^{x}$, as particular solutions?
[7] Can some homogeneous linear equation $y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ have the following three functions, $y_{1}=-x^{2}+\frac{1}{x}, y_{2}=x^{2}-\frac{2}{x}$, and $y_{3}=4 x^{2}-\frac{3}{x}$ as particular solutions?
[8] Suppose that $y_{p}=x^{2}$ satisfies $y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x)$.
(a) Can you produce two other solutions of this differential equation?
(b) Can you find all solutions of this differential equation?
[9] Suppose that

$$
\left\{\begin{array}{l}
y_{p}=x^{2} \text { satisfies } y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x) \\
\text { and } y_{1}=e^{3 x} \text { satisfies } y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0
\end{array}\right.
$$

(a) Can you produce two other solutions of the homogeneous equation $y^{\prime \prime}+b(x) y^{\prime}+$ $c(x) y=0$?
(b) Can you find all solutions of the homogeneous equation $y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$?
(c) Can you produce two other solutions of the nonhomogeneous equation $y^{\prime \prime}+b(x) y^{\prime}+$ $c(x) y=f(x) ?$
(d) Can you find all solutions of the nonhomogeneous equation $y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x)$?
[10] Suppose that

$$
\left\{\begin{array}{l}
y_{p}=x^{2} \text { satisfies } y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x), \\
\text { and } y_{1}=e^{3 x} \text { and } y_{2}=e^{x} \text { satisfy } y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0
\end{array}\right.
$$

(a) Can you produce two other solutions of the equation $y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$?
(b) Can you find all solutions of the equation $y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$?
(c) Can you produce two other solutions of the equation $y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x)$?
(d) Can you find all solutions of the equation $y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x)$?
[11] Suppose that $y_{1}=x^{2}, y_{2}=x+x^{2}$, and $y_{3}=x^{3}$ are particular solutions of a nonhomogeneous linear equation $y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x)$. Can you find all solutions of the nonhomogeneous equation $y^{\prime \prime}+b(x) y^{\prime}+c(x) y=f(x)$?
[12] Given the fact that $y_{1}=e^{x}$ is a solution of a nonlinear differential equation $y^{\prime \prime}=f(x, y)$, can you find all solutions of this equation?
[13] Given the fact that $y_{1}=e^{x}, y_{2}=-2 e^{-x}$, and $y_{3}=e^{3 x}$ are solutions of a nonlinear differential equation $y^{\prime \prime}=f(x, y)$, can you find all solutions of this equation?
[14] Given the fact that all four functions $y_{1}=e^{x}, y_{2}=-2 e^{-x}, y_{3}=3 e^{x}$, and $y_{4}=-3 e^{-x}$ are particular solutions of a nonlinear differential equation $y^{\prime \prime}=f(x, y)$, can you find all solutions of this equation?
(See next page for answers)

Answers:

[1] (a) Not enough information. (b) Not enough information.
[2] (a) $C e^{3 \sin 2 x}$ with any constant C is a solution. Answer: $0.3 e^{3 \sin 2 x},-7 e^{3 \sin 2 x}, \ldots$
(b) Not enough information.
[3] (a) $0.3 e^{-2 x},-7 e^{-2 x}, \ldots$
(b) Not enough information.
[4] (a) $0.3 e^{3 x}-7 e^{-2 x}, 6 e^{-2 x}, \cdots$
(b) $y=C_{1} e^{3 x}+C_{2} e^{-2 x}$ where C_{1} and C_{2} are free parameters.
[5] Yes. Functions $y_{1}=e^{3 x}$ and $y_{2}=e^{-x}$ both satisfy $y^{\prime \prime}-2 y^{\prime}-3 y=0$.
Hint: Substituting $y_{1}=e^{3 x}$ and $y_{2}=e^{-x}$ into $y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$, we obtain $9+3 b+c=$ $0,1-b+c=0$. Now solve for b and c.
[6] Impossible.
Hint: Following the method used in the previous problem, plug $y_{1}=e^{2 x}, y_{2}=e^{x}$ and $y_{3}=x e^{x}$ into $y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$. We obtain

$$
\left\{\begin{array}{l}
4+2 b+c=0, \\
1+b+c=0, \\
2+x+(1+x) b+x c=0 .
\end{array}\right.
$$

This linear system for (b, c) has no solutions.
Remark: Another way to solve the problem is to notice that in general, a second order homogeneous linear diff eq $y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$ can have at most two linearly independent solutions. The given functions $y_{1}=e^{2 x}, y_{2}=e^{x}$ and $y_{3}=x e^{x}$, however, are linearly independent. Thus, no second order homogeneous linear equation can have all these three functions as solutions.
[7] Yes, y_{1}, y_{2} and y_{3} all satisfy $y^{\prime \prime}-\frac{2}{x^{2}} y=0$.
Hint: The three functions y_{1}, y_{2} and y_{3} are linearly dependent. They all are linear combinations of x^{2} and $1 / x$.
[8] (a) Not enough information. (b) Not enough information.
[9] (a) $6 e^{3 x},-0.45 e^{3 x}, \cdots$
(b) Not enough information.
(c) $x^{2}+C e^{3 x}$ with any constant C is a solution. Answer: $x^{2}+e^{3 x}, x^{2}-0.45 e^{3 x}, \ldots$
(d) Not enough information.
[10] (a) $6 e^{3 x},-5 e^{x},-2 e^{3 x}+7 e^{x}, \cdots$
(b) $y=C_{1} e^{3 x}+C_{2} e^{x}$ where C_{1} and C_{2} are free parameters.
(c) $x^{2}+e^{3 x}, x^{2}-5 e^{x}, x^{2}-2 e^{3 x}+7 e^{x}, \cdots$
(d) $y=x^{2}+C_{1} e^{3 x}+C_{2} e^{x}$ where C_{1} and C_{2} are free parameters.
[11] $y=x^{2}+C_{1} x+C_{2}\left(x^{3}-x^{2}\right)$ where C_{1} and C_{2} are free parameters.
Hint: Since y_{1}, y_{2}, and y_{3} all satisfy the same nonhomegeneous equation $y^{\prime \prime}+b(x) y^{\prime}+c(x) y=$ $f(x)$, one can verify that $y_{2}-y_{1}$ and $y_{3}-y_{1}$ satisfy the corresponding homogeneous equation $y^{\prime \prime}+b(x) y^{\prime}+c(x) y=0$.
[12] Not enough information.
[13] Not enough information.
[14] Not enough information.

