$$
\text { Scalar Separable Equations: } \frac{d y}{d x}=f(x) g(y)
$$

Solution Method: Rewrite the given equation (symbolically):

$$
\frac{d y}{g(y)}=f(x) d x
$$

Now integrate both sides:

$$
\int \frac{d y}{g(y)}=\int f(x) d x
$$

This gives a realtion between x and y. If you can solve this equation for y in terms of x, go ahead.

Example: Solve the initial value problem $\frac{d y}{d x}=e^{2 y} \cos x, y(0)=-\frac{1}{3}$.
Solution: Rewrite the diff. eq. into $e^{-2 y} d y=\cos x d x$ and then integrate:

$$
\int e^{-2 y} d y=\int \cos x d x
$$

This gives

$$
-\frac{1}{2} e^{-2 y}=\sin x+C,
$$

where C is an arbitray constant. Solve the last equation for y in terms of x :

$$
y=-\frac{1}{2} \ln (-2 \sin x-2 C) .
$$

This is the general solutions to the given ODE. Now examine the initial condition:

$$
y(0)=-\frac{1}{3} \quad \Longrightarrow-\frac{1}{3}=-\frac{1}{2} \ln (-2 C) \quad \Longrightarrow C=-\frac{1}{2} e^{2 / 3}
$$

Thus, the answer to the problem is

$$
y=-\frac{1}{2} \ln \left(-2 \sin x+e^{2 / 3}\right) .
$$

Exercises

Solve the following ODEs and initial value problems of ODEs.
[1] $y^{\prime}(t)+(2 t-\sin 2 t) y(t)=0$
[2] $t x^{\prime}(t)+4 x(t)=0(t>0), x(3)=2$
[3] $y^{\prime}(x)=x^{2} e^{x} y(x)^{2}$
[4] $\frac{d y}{d x}=(1+6 x) y(1-y), y(0)=1 / 3$

Answers

[1] $y=C e^{-t^{2}-0.5 \cos 2 t}$
[2] $x(t)=162 t^{-4}$
[3] $y=-1 /\left(C+x^{2} e^{x}-2 x e^{x}+2 e^{x}\right)$
[4] $y=\frac{e^{x+3 x^{2}}}{2+e^{x+3 x^{2}}}$

