Reading: How to win the lottery with geometry

This reading is an excerpt from Jordan Ellenberg’s book How Not to Be Wrong: The Power of
Mathematical Thinking. In this chapter, Ellenberg is explaining the true story of how two groups
of people made money (yes, profit!) by playing the Michigan state lottery, a game called “Cash
WinFall”. Most of the ideas involved are basic probability theory — the particular design of this
lottery game meant that on certain days, buying a ticket had positive expected value. So if you
bought a lot of tickets on those days, you would very likely make money.

The people involved are :

a) A retired man from Michigan named Gerald Selbee, leading a group of “investors” who all
pitched in money to buy high volumes of tickets

and
b) A group of undergraduate students from MIT who called themselves the “Random Strategies”,
led by a senior named James Harvey.

To play Cash WinFall, you pick 6 numbers between 1 and 46. The lottery then picks 6 winning
numbers, and you get prizes based on how many of your numbers match the winners. (Ellenberg
will later discuss a simpler version of this game, where you are supposed to pick 3 numbers between
1 and 7).

The reading begins with a comparison of the strategies of these two groups. Selbee’s group buys
a random assortment of tickets with an essentially random assortment of numbers, while Harvey’s
group chooses all the numbers themselves....




he notion of utility helps make sense of a puzzling feature of the

Cash WinFall story. When Gerald Selbee’s betting group bought

massive quantities of tickets, they used Quic Pic, letting the lot-
tery’s computers pick the numbers on their slips at random. Random
Strategies, on the other hand, picked their numbers themselves; this
meant they had to fill out hundreds of thousands of slips by hand, then
feed them through the machines at their chosen convenience stores one
by one, a massive and incredibly dull undertaking.

The winning numbers are completely random, so every lottery ticket
has the same expected value; Selbee’s 100,000 Quic Pics would bring in
the sarne amount of prize money, on average, as Harvey and Lu’s 100,000
artisanally marked tickets. As far as expected value is concerned, Ran-
dom Strategies did a lot of painful work for no reward. Why?

Consider this case, which is simpler but of the same nature. Would
you rather have $50,000, or would you rather have a 50/50 bet between
losing $100,000 and gaining $200,000? The expected value of the bet is

(1/2) x (-$100,000) + (1/2) x ($200,000) = $50,000,

the same as the cash. And there is indeed some reason to feel indif-
ferent between the two choices; if you made that bet time after time
after time, you'd almost certainly make $200,000 about half the tims
and lose $100,000 the other half. Imagine you alternated winning and
losing: after two bets you've won $200,000 and lost $100,000 for a net
gain of $100,000, after four bets you're up $200,000, after six bets

$300,000, and so on: a profit of $50,000 per bet on average, just the -

same as if you'd gone the safe route.

But now pretend for a moment that you're not a character in a word
problem in an economics textbook, but rather an actual person—an ac-
tual person who does not have $100,000 cash on hand. When you lose
that first bet and your bookie—let us say your big, angry, bald, power-
lifting bookie—comes to collect, do you say, “An expected value calcula-
tion shows that it’s very likely I'll be able to pay you back in the long
run”? You do not. That argument, while mathematically sound, will not
achieve its goals.

If you're an actual person, you should take the $50,000.

What does all this have to do with Cash WinFall? As we said at the
top, the expected dollar value of 100,000 lottery tickets is what it is, no
matter which tickets you buy. But the variance is a different story. Sup-
pose, for instance, I decide to go into the high-volume betting game, but
I také a different approach; I buy 100,000 copies of the same ticket.

If that ticket happens to match 4 out of the 6 numbers in the lottery
drawing, then I'm the lucky holder of 100,000 pick-4 winners, and I'm
basically going to sweep up the entire $1.4 million prize pool, for a tidy
600% profit. But if my set of numbers is a loser, I lose my whole $200,000
pile. That’s a high-variance bet, with a big chance of a big loss and a small
chance of an even bigger win.

So “don’t put all your money on one number” is pretty good advice—
much better to spread your bets around. But wasn’t that exactly what
Selbee’s gang was doing by using the Quic Pic machine, which chooses
numbers at random?

Not quite. First of all, while Selbee wasn’t putting all his money on
one ticket, he was buying the same ticket multiple times. At first, that
seems strange. At his most active, he was buying 300,000 tickets per
drawing, letting the computer pick his numbers randomly from almost
10 million choices. So his purchases amounted to a mere 3% of the pos-
sible tickets; what are the odds he’d buy the same ticket twice?

Actually, they’re really, really good. Old chestnut: bet the guests at a
party that two people in the room have the same birthday. It had better
be a good-sized party—say there are thirty people there. Thirty birth-
days out of 365 options’ aren’t very many, so you might think it pretty
unlikely that two of those birthdays would land on the same day. But the
relevant quantity isn’t the number of people: it’s the number of pairs of
people. It’s not hard to check that there are 435 pairs of people,’ and
each pair has a 1 in 365 chance of sharing a birthday; so in a party that
size you'd expegt to see a pair sharing a birthday, or maybe even two

* 366 if you count leap days, but we're not going for precision here.

+ The first person in the pair can be any of the 30 people, and the second any of the 29 who re-
main, giving 30 x 29 choices; but this counts cach pair twice, since it counts {Ernie, Bert} and
(Bert, Ernie} separately; so the right number of pairs is (30 x 29)/2 = 435,
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pairs. In fact, the chance that two people out of thirty share a birthday
turns out to be a little over 70%—pretty good odds. And if you buy
300,000 randomly chosen lottery tickets out of 10 million options, the
chance of buying the same ticket twice is so close to 1 that I'd rather just
say “it’s a certainty” than figure out how many more 9s I'd need after
“99.9%” to specify the probability on the nose.

And it’s not just repeated tickets that cause the trouble. As always, it
can be easier to see what’s going on with the math if we make the num-
bers small enough that we can draw pictures. So let’s posit a lottery draw
with just seven balls, of which the state picks three as the jackpot com-
bination. There are thirty-five possible jackpot combos, corresponding
to the thirty-five different ways that three numbers can be chosen from
theset 1,2, 3,4, 5, 6, 7. (Mathematicians like to say, for short, “7 choose
3 is 35.”) Here they are, in numerical order:

123 124 125 126 127
134 135 136 137
145 146 147

156 157

167

234 235 236 237
245 246 247

256 257

267

345 346 347
356 357

367

456 457

467

567

Say Gerald Selbee goes to the store and uses the Quic Pic to buy seven
tickets at random. His chance of winning the jackpot remains pretty
small. But in this lottery, you also get a prize for hitting two out of three
numbers. (This particular lottery structure is sometimes called the Tran-
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sylvanian lottery, though I could find no evidence that such a game has
ever been played in Transylvania, or by vampires.)

Two out of three is a pretty easy win. So I don’t have to keep typing
“two out of three” let’s call a ticket that wins this lesser prize a deuce. If
the jackpot drawing is 1, 4, and 7, for example, the four tickets with a 1,
a 4, and some number other than 7 are all deuces. And besides those four,
there are the four tickets that hit 1-7 and the four that hit 4-7. So twelve
out of thirty-five, just over a third of the possible tickets, are deuces.
Which suggests there are probably at least a couple of deuces among Ger-
ald Selbee’s seven tickets. To be precise, you can compute that Selbee has

5.3% chance of no deuces

19.3% chance of exactly one deuce
30.3% chance of two deuces
26.3% chance of three deuces
13.7% chance of four deuces

4.3% chance of five deuces

0.7% chance of six deuces

0.1% chance of all seven tickets being deuces.
The expected number of deuces is thus

5.3% x0+19.3% x 1 +30.3% x 2 +26.3%x3+13.7% x4
+43%%x5+07%x6+0.1%x7=24

The Transylvanian version of James Harvey, on the other hand, doesn’t
use the Quic Pic; he fills out his seven tickets by hand, and here they are:

124
135
/ 167
257
347
236
456
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Suppose the lottery draws 1, 3, and 7. Then Harvey’s holding three
deuces: 135, 167, and 347. What if the lottery draws 3, 5, 6? Then Har-
vey once again has three deuces among his tickets, with 135, 236, and
456. Keep trying possible combinations and you’ll quickly see that Har-
vey’s choices have a very special property: either he wins the jackpot, or
he wins exactly three deuces. The chance that the jackpot is one of Har-
vey’s seven tickets is 7 out of 35, or 20%. So he has a

20% chance of no deuces

80% chance of three deuces.
His expected number of deuces is

20% x0+80% x3=24

the same as Selbee’s, as it must be. But the variance is much smaller;
Harvey has very little uncertainty about how many deuces he’s going to
get. That makes Harvey’s portfolio a lot more attractive to potential car-
tel members. Note especially: whenever Harvey doesn’t get three deuces,
he wins the jackpot. That means that Harvey’s strategy guarantees a sub-
stantial minimum payoff, something the Quic-Pickers like Selbee can
never do. Picking the numbers yourself can get rid of your risk while
maintaining the reward—if you pick the numbers right.

And how do you do that? That is—literally, for once!—the million-
dollar question.

First try: just ask your computer to do it. Harvey and his team were
MIT students, presumably able to knock off a few dozen lines of code
before their morning coffee. Why not just write a program to run through
all combinations of 300,000 WinFall tickets to see which one provided
the lowest-variance strategy?

That wouldn’t be a hard program to write. The one small problem
would be the way all matter and energy in the universe decayed into heat
death by the time your program had handled the first tiny fragment of a
microsliver of the data it was trying to analyze. From the point of view
of a modern computer, 300,000 is not a very large number. But the ob-
jects that the proposed program has to pick through are not the 300,000

WHERE THE TRAIN TRACKS MEET 261

tickets—they are the possible sets of 300,000 tickets to be purchased
from the 10 million possible Cash WinFall tickets. How many of those
sets are there? More than 300,000. More than the number of subatomic
particles that exist or have ever existed. A lot more. You've probably
never even heard of a number as big as the number of ways to select your
300,000 tickets.”

What we’re up against here is the dreaded phenomenon known by
computer-science types as “the combinatorial explosion.” Put simply:
very simple operations can change manageably large numbers into abso-
lutely impossible ones. If you want to know which of the fifty states is
the most advantageous place to site your business, that’s easy; you just
have to compare fifty different things. But if you want to know which
route through the fifty states is the most efficient—the so-called travel-
ing salesman problem—the combinatorial explosion goes off, and you
face difficulty on a totally different scale. There are about 30 vigintillion
routes to choose from. In more familiar terms, that’s 30 thousand trillion
trillion trillion trillion trillion.

Boom!

So there’d better be another way to choose our lottery tickets to
tamp down variance. Would you believe me if I told you it all came

down to plane geometry?

WHERE THE TRAIN TRACKS MEET

Parallel lines don’t meet. That’s what makes them parallel.

But parallel lines sometimes appear to meet—think of a pair of train
tracks, alone in an empty landscape, the two rails seeming to converge as
your eyes follow them closer and closer to the horizon. (I find it helps to
have some country music playing if you want a really vivid mental image
Lere.) This is the phenomenon of perspective; when you try to depict the
three-dimensional world on your two-dimensional field of vision, some-
thing has to give.

The people who first figured out what was going on here were the

* Unless you've heard of a googolplex. Now that is a big number, boy howdy.
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people who needed to understand both how things are and how things
look, and the difference between the two: namely, painters. The mo-
ment, early in the Italian Renaissance, at which painters understood per-
spective was the moment visual representation changed forever, the
moment when European paintings stopped looking like your kid’s draw-
ings on the refrigerator door (if your kid mostly drew Jesus dead on the
cross) and started looking like the things they were paintings of’

How exactly Florentine artists like Filippo Brunelleschi came to de-
velop the modern theory of perspective has occasioned a hundred quar-
rels among art historians, into which we won’t enter here. What we know
for sure is that the breakthrough joined aesthetic concerns with new
ideas from mathematics and optics. A central point was the understand-
ing that the images we see are produced by rays of light that bounce off
objects and subsequently strike our eye. This sounds obvious to a modern
ear, but believe me, it wasn’t obvious then. Many of the ancient scientists,
most famously Plato, argued that vision must involve a kind of fire that
emanated from the eye. This view goes at least as far back as Alcmaeon
of Croton, one of the Pythagorean weirdos we met in chapter 2. The eye
must generate light, Alcmaeon argued: what other source could there be
for the phosphene, the stars you see when you shut your eyes and press
down on your eyeball? The theory of vision by reflected rays was worked
out in great detail by the eleventh-century Cairene mathematician Abu
‘Ali al-Hasan ibn al-Haytham (but let’s call him Alhazen, as most West-
ern writers do). His treatise on optics, the Kitab al-Manazir, was trans-
lated into Latin and taken up eagerly by philosophers and artists seeking
a more systematic understanding of the relation between sight and the
thing seen. The main point is this: a point P on your canvag represents
a line in three-dimensional space. Thanks to Euclid, we know there’s a
unique line containing any two specified points. In this case, the line is
the one containing P and your eye. Any object in the world that lies on
that line gets painted at point P.

Now imagine you're Filippo Brunelleschi standing out on the flat

* Or at least they looked like certain kinds of optical representations of the things they were
paintings of, which over the years we've come to think of as realistic; what counts as “realism” has
been the subject of hot contention among art critics for about as long as there's been art criticism.
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prairie, the canvas on an easel in front of you, painting the train tracks.’
The track consists of two rails, which we call R, and R,. Each one of
these rails, drawn on the canvas, is going to look like a line, And just as a
point on the canvas corresponds to a line in space, a line on the canvas
corresponds to a plane. The plane P corresponding to R, is the one swept
out by the lines joining each point on the rail to your eye. In other words,
it’s the unique plane containing both your eye and the rail R,. Similarly,
the plane P, corresponding to R, is the one containing your eye and R,.
Each of the two planes cuts the canvas in a line, and we call these lines
L, and L,.

The two rails are parallel. But the two planes are not. How could they
be? They meet at your eye, and parallel planes do not meet anywhere.
But planes that aren’t parallel have to intersect in a line. In this case, the
line is horizontal, emanating from your eye and proceeding parallel to
the train tracks. The line, being horizontal, does not meet the prairie—it
shoots out toward the horizon, never touching the ground. But—and
here is the point—it meets the canvas, at some point V. Since V is on the
plane P, it must be on the line L, where P, cuts the canvas. And since V
is also on P,, it must beonL,. In other words, V is the point on the can-
vas where the painted train tracks meet. In fact, any straight path on the
prairie that runs parallel to the train tracks will look, on the canvas, like

« Anachronistic, okay, but just go with it.

—— e
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a line through V. V is the so-called vanishing point, the point th h
which the paintings of all lines parallel to the tracks, must pass Irofug
every pair of parallel tracks determines some vanishing poinf on ‘thI:e ;Ct’
v'as; where the vanishing point is depends on which direction the paraﬂr;
imes ar': glc;irigl.( (Tlile only exceptions are pairs of lines parallel to the
anvas itself, like the slat i 11 sti
S s between the rails—they’ll still look parallel in
The conceptual shift that Brunelleschi made here is the heart of what
mathematicians call projective geometry. Instead of points in the land-
sca-ape, we think of lines through our eye. At first glance, the distinction
might seem purely semantic; each point on the ground determines o
and only one line between the point and our eye, so what does it rnat‘cne
whether we think about the point or think about the line? The diffeif
ence is just this: there are more lines through our eye than there a
points on the ground, because there are horizontal lines, which don’t "re
tersect the ground at all. These correspond to the van’ishing points 1:1;
o'ur canvas, the places where train tracks meet. You might think of this
line as a point on the ground that is “infinitely far away” in the direction
?f the tracks. And indeed, mathematicians usually call them points at
infinity. When you take the plane Euclid knew and glue on the poi ts .
infinity, you get the projective plane. Here’s a picture of it: P

p
: Qa

4
(sam o;ﬁ*'
as 'H(. r ve H-GIC'Y!)
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Most of the projective plane looks just like the regular flat plane
you're used to. But the projective plane has more points, those so-called
points at infinity: one for each possible direction along which a line can
be oriented in the plane. You should think of the point P, which corre-
sponds to the vertical direction, as being infinitely high up along the
vertical axis—but also infinitely low down along the vertical axis. In the
projective plane, the two ends of the y-axis meet at the point at infinity,
and the axis is revealed to be not really a line but a circle. In the same
way, Q is the point that’s infinitely far northeast (or southwest!) and R is
the point at the end of the horizontal axis. Or rather, at both ends. If you
travel infinitely far to the right, until you arrive at R, and then keep on
going, you find yourself still traveling rightward but now heading back
toward the center from the left edge of the picture.

This kind of leaving-one—way—and—corning-back—the-other enthralled
the young Winston Churchill, who recalled vividly the one mathemati-

cal epiphany of his life:

I had a feeling once about Mathematics, that I saw it all—Depth
beyond depth was revealed to me—the Byss and the Abyss. I saw; as
one might see the transit of Venus—or even the Lord Mayor’s Show,
a quantity passing through infinity and changing its sign from plus to
minus. ] saw exactly how it happened and why the tergiversation was
inevitable: and how the one step involved all the others. It was like

politics. But it was after dinner and I let it go!

In fact, point R is not just the endpoint of the horizontal axis, but of
any horizontal line. If two different lines are both horizontal, they are
parallel; and yet, in projective geometry, they meet, at the point at infin-
ity. David Foster Wallace was asked in a 1996 interview about the ending
of Infinite Jest, which many people found abrupt: Did he, the interviewer
asked, avoid writing an ending because he “just got tired of writing it”?
Wallace replied, rather testily: “There is an ending as far as I'm con-
cerned. Certain kinds of parallel lines are supposed to start converging
in such a way that an ‘end’ can be projected by the reader somewhere
beyond the right frame. If no such convergence or projection occurred to

you, then the book’s failed for you.”
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The projective plane has the defect that it’s kind of hard to draw, but the
advantage that it makes the rules of geometry much more agreeable. In
Euclid’s plane, two different points determine a single line, and two dif-
ferent lines determine a single intersection point—unless they’re paral-
lel, in which case they don’t meet at all. In mathematics, we like rules,
and we don’t like exceptions. In the projective plane, you don’t have to
make any exceptions to the rule that two lines meet at a point, because
parallel lines meet too. Any two vertical lines, for instance, meet at P, and
any two lines pointing northeast to southwest meet at Q. Two points
determine a single line, two lines meet at a single point, end of story.” It’s
perfectly symmetrical and elegant in a way that classical plane geometry
is not. And it’s not coincidence that projective geometry arose naturally
from attempts to solve the practical problem of depicting the three-
dimensional world on a flat canvas. Mathematical elegance and practical
utility are close companions, as the history of science has shown again
and again. Sometimes scientists discover the theory and leave it to math-
ematicians to figure out why it’s elegant, and other times mathemati-
cians develop an elegant theory and leave it to scientists to figure out
what it’s good for.

One thing the projective plane is good for is representational paint-
ing. Another is picking lottery numbers.

A TINY GEOMETRY

The geometry of the projective plane is governed by two axioms:

Every pair of points is contained in exactly one common line.

Every pair of lines contains exactly one common point.

Once mathematicians had found one kind of geometry that satisfied

these two perfectly tuned axioms, it was natural to ask whether there

* But if the lines containing R are all horizontal, and the lines containing P are all vertical, what
is the line through R and P? It is a line we haven’t drawn, the line ar infinity, which contains all the
points at infinity and none of the points of the Euclidean plane.

S
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were any more. It turns out there are a lot. Some are big, some are small.
The very tiniest is called the Fano plane, after its creator, Gino Fano, who
in the late nineteenth century was one of the first mathematicians to

take seriously the idea of finite geometries. It looks like this:

This is a small geometry indeed, consisting of only seven points! The
“lines” in this geometry are the curves shown in the diagram; theyre
small, too, possessing only three points each. There are seven of them,
six of which look like lines and the other of which looks like a circle. And
yet this so-called geometry, exotic as it is, satisfies axioms 1 and 2 just as
well as Brunelleschi’s plane did.

Fano had an admirably modern approach—he had, to use Hardy’s
phrase, “the habit of definition,” avoiding the unanswerable question of
what geometry really was, and asking, instead: Which phenomena be-

have like geometry? In Fano’s own words:

A base del nostro studio noi mettiamo una varieta qualsiasi di enti di
qualunque natura; enti che chiameremo, per brevita, punti indipen-

dentemente perd, ben inteso, dalla loro stessa natura.

That is:

As a basis for our study we assume an arbitrary collection of entities
of an arbitrary nature, entities which, for brevity, we shall call points,

but this is quite independent of their nature.

For Fano and his intellectual heirs, it doesn’t matter whether a line
“looks like” a line, a circle, a mallard duck, or anything else—all that
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matters is that lines obey the laws of lines, set down by Euclid and his suc-
cessors. If it walks like geometry, and it quacks like geometry, we call it
geometry. To one way of thinking, this move constitutes a rupture be-
tween mathematics and reality, and is to be resisted. But that view is too
conservative. The bold idea that we can think geometrically about sys-
tems that don’t look like Euclidean space,’ and even call these systems
“geometries” with head held high, turned out to be critical to under-
standing the geometry of the relativistic space-time we live in; and nowa-
days we use generalized geometric ideas to map Internet landscapes,
which are even further removed from anything Euclid would recognize.
That’s part of the glory of math; we develop a body of ideas, and once
they’re correct, they’re correct, even when applied far, far outside the con-

text in which they were first conceived.

For example: here’s Fano’s plane again, but with the points labeled by
the numbers 1 through 7:

* To be fair, there is another sense in which the Fano plane really does look like more traditional
geometry. Descartes taught us how to think of points on the plane as pairs of cosrdinates x and ,
which are real numbers; if you use Descartes's construction but draw your coordinates from
number systems other than the real numbers, vou get other geometries. If you do Cartesian ge-
ometry using the Boolean number system beloved of computer scientists, which has only two

numbers, the bits 0 and 1, you get the Fano plane. That's a beautiful story, but it's not the story
we're telling just now, Se= the endnotes for a little more of it.
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Look familiar? If we list the seven lines, recording for each the set of

three points that constitute it, we get:

124
135
167
257
347
236
456

This is none other than the seven-ticket combo we saw in the last
section, the one that hits each pair of numbers exactly once, guarantc?e-
ing a minimum payoff. At the time, that property seemed impressive
and mystical. How could anyone have come up with such a perfectly
arranged set of tickets?

But now I've opened the box and revealed the trick: it’s simple geom-
etry. Each pair of numbers appears on exactly one ticke't, because each
pair of points appears on exactly one line. It's just Euclid, even tho.ugh
we’re speaking now of points and lines Euclid would not have recognized

as such.

I’'M SORRY, DID YOU SAY “BOFAB"?

The Fano plane tells you how to play the seven-number Transylvanian
lottery without taking on any risk, but what about the Massachus.etts
lottery? There are lots of finite geometries with more than seven points,
but none, unfortunately, that precisely meet the requirements of Cash
WinFall. Something more general is needed. The answer doesn’t come
directly from Renaissance painting or Euclidean geometry, but from an-
other unlikely source—the theory of digital signal processing. o
Suppose I want to send an important message to a satellite: like “Turn
on right thruster.” Satellites don’t speak English, so what I'm ac'tually
sending is a sequence of 1s and Os, what computer scientists call bits:



