24.

2.5.

2.6.

2.7.

Prove that if cos & and cos 3 are constructible then so are cos(a+ f3) and

cos(a — ).

Determine those integers k for which cog k°=cos(kw/180) is con-
structible.

Prove that if o+ 8+~ =7 then

1 —(cosZO¢+cos25+cos2 v) —2cosacos fcosy=0.

Let A be a triangle and let O denote the centre of the circumscribed circle
of A. Suppose that the distances between O and the sides of A are 1,2

and 3. Prove that the triangle A cannot be constructed using ruler and
compass. (H)

3. Constructible regular polygons

The exact characterization of the constructible regular polygons was given
by C. F. Gauss in a celebrated theorem proved in 1801. Gauss’ theorem is rather
surprising in that it gives a purely number theoretic answer to a purely geometric
problem.

The numbers F; =22"+1 (1=0,1;...) are called Fermat numbers. The first
five Fermat numbers, corresponding to :=0,1,2,3,4 are 3, 5, 17, 257 and 65537.
Each of these numbers is prime. Based on this “evidence” Pierre Fermat conjec-
tured (about 1640) that the numbers F; are prime for every . Fermat’s conjecture
was disproved by L. Euler in 1732: Euler discovered that 641 divides F5 and thus
F5 is composite. The prime factorization of Fg was found in 1880; it turned out
that 274177 divides Fg. In 1970 it was shown that F5 is the product of two
primes consisting of 17 and 22 decimal digits, respectively. By now it is known
that F; is composite for every 5<¢<23. Several other Fermat numbers were
also examined, but no Fermat primes were found after Fj.

Gauss’ theorem states that the regular n-gon is constructible if and only if
n=2% P1-..Pm, Where py,...,pm are different Fermat primes.

Since 3 and 5 are Fermat primes, this implies that for n=3,4,5,6,8 and
10 the regular n-gon is constructible (this was known already by Euclid). On
the other hand, 7 is not a Fermat prime, and thus the regular 7-gon is not con-
structible (as we proved in the previous section). Also, the prime factorization
of 9 contains a power of an odd prime, therefore the regular 9-gon is not con-
structible either.

In this section we sketch the proof of the “only if” part of Gauss’ theorem.
The proof is based on the notions of algebraic number and degree.

The set of polynomials with rational coefficients will be denoted by Q[x]. A
complex number « is said to be algebraic if it is the root of a nonzero polynomial
p € Q[z]. Among the degrees of all nonzero polynomials f € Q[«] satisfying
f(a)=0 there is a minimal one. This minimal degree is called the degree of the
number o

For example, every rational number is algebraic of degree 1. The number
V2 is algebraic of degree 2. The number V2 is algebraic of degree 3 (prove it!).

The proof of Gauss’ theorem is based on the following statement: if 2 num-
ber is constructible then it is algebraic, and its degree is a power of 2.



We shall prove this in the next section; for the time being let us take it
for granted. We show that if p is an odd prime and if the regular p-gon is con-

2 . .
structible then p must be a Fermat prime. Let £ =2 cos % Then ¢ is constructible

and thus ¢ is algebraic and its degree is a power of 2. Since t=c+c"! where
£=c0S 2—7r+i sin g;, it follows that the degree of ¢ is also a power of 2 (the

proof ofpthis is also postponed to the next section; see Exercise 4.7). Now ¢ is a
root of

P -1

z—1
and hence the degree of ¢ is at most p — 1. It can be shown that the degree of ¢
is exactly p— 1 (we omit the proof). Thus p — 1 =27 for some 4, and p=27 +1.
Now, j must be a power of 2. Indeed, suppose that d > 1 is an odd divisor of J-
If j=de and 2° =a then

=P lagP 24 41,

p=27+1=2% 11204 1 =(g+1)(a%"! —a% 24 —d+1)

which is impossible, since p is prime. Hence j =2', and p= 2241 =F; is a Fer-
mat prime.

Next we show that if p is an odd prime then the regular pz-gon is never

constructible. Indeed, otherwise the degree of the algebraic number ¢ =2 cos 2—7;
D
would be a power of 2. Then the degree of

7 =08 27T+ 'sin27r
=C0S —5 +14 8in —

p? p?
would be a power of 2, as well. However, 7 is a root of

)
$P —1 =xp(p—1)+wp(p_2)+...+17

aP—1

and it can be shown that the degree of 7 is exactly p(p — 1). Since p(p — 1) cannot
be a power of 2, this is a contradiction.

Now suppose that the regular n-gon is constructible. If d is a divisor of n
then the regular d-gon is also constructible, since a suitable subset of the vertices
of the n-gon forms a regular d-gon. This implies that if p is an odd prime divisor
of n then the regular p-gon is constructible and thus p must be a Fermat prime.
Also, n cannot have a divisor of the form p? where p is an odd prime, since
the regular pz~g0n is not constructible. Therefore the prime decomposition of
n must be of the form n=2*’;:1 ... Dm, Where p,... pp, are different Fermat
primes. This concludes the proof of the “only if” part of Gauss’ theorem.

Exercises

3.1
3.2.
3.3.
34.

3.5.
3.6.
3.7.

3.8.

Prove that for ¢ > 2, F; is not the sum of two primes.

Prove that for every i > 2 the last digit of F; is 7.

Prove that if F; =p™ where p is a prime then m=1.

Determine those primes that are smaller than 10° and can be written in
the form n™ +1 where n is a positive integer.

Prove that 22 +3 is composite for infinitely many 4. (H)

Prove that v/2++/3 is an algebraic number of degree 4.

Prove that if « is an algebraic number of degree n then (each value of)
V@ is an algebraic number of degree at most 2n. Is it true that the degree
of /a is exactly 2n?

Prove that if « is an algebraic number of degree n then o
number of degree at most n. Is it true that the degree of a? is exactly n?

2 is an algebraic



4. Some basic facts on linear Spaces and fields

An expression of the form c;z; +. . A CnTn
of the numbers z1, ..., 2, with coefficients Cller

Let F'C Cbe a field. The set V¢ C is called a linear space (or vector space)

over F, if every linear combination of elements of V' with coeflicients from F
belongs to V.

is called a linear combination
T G

A subset G C V is said to be a generating system of 'V, if every element of

V can be obtained as a linear combination of elements of & with coefficients
from F'.

The elements of a subset J7 CV are said to be linearly independent,
if whenever Tly. .. &y are different elements of H, t,....t,€F and
t1zy+. .. +tyxy, =0, then necessarily 1 =...=¢, =0,

As an illustration of these notions consider the set 1 =Q(\/§). It is clear that
V' is a linear space over Q. Each of the sets {1,2, \/54-5}, {1+v2,1 —3v2},

{1, \/5} is a generating system of V. In every linear space any one-element set

consisting of a nonzero number is linearly independent. In Q(v2) the set {1, \/5}
consists of linearly independent elements, while {1,2,V2 +5} does not,

The following basic fact is sometimes called the fundamental theorem of
linear algebra. We shall accept it without proof.

In every linear space, the cardinality of any generating system is not Jess
than the cardinality of an v set of linearly independent elements,

If a set is a generating system and, at the same time, it consists of linearly
independent elements, then it is called,a basis. It is easy to sce that a set B is
a basis of the linear space V over F° if and only if every element of V can be
written uniquely as the linear combination of elements of B with coefficients
from F,

One can prove that every linear space has a basis, Moreover, every set of
linearly independent elements is contained in a basis. It follows from the funda-
mental theorem that 7n every linear space V. the cardinality of any two bases is
the same. This common cardinality is called the dimension of the linear space

V.. The space is called finite dimensional if its dimension is finite (that is, if it
has a finite basis).

Let F be a ﬁeld. A field K is called an extension of F'if F C . In this case
L is a linear space over I (why?). The dimension of this linear space is called

he degree of the extension F'C K and is denoted by [K : F]. The extension
;ec K is called finite if [K : F] is finite.

For example, let a € F' be a positive real number such that ﬁ ¢r .fIld'et K 1=
F(y/a). Then the set {1,/a} is a generating system of K and consists of linearly

'ndepc.ndt‘.llt elements. Therefore it is a baSlS, and Fh]ls he d I'[]BI'IS‘ on o . K over
IF 1s two In other words F(\/a) is a finite extension of F' and [F(\/E) g F] =1
1 X I

i i follows. Let F' be a field and let
tion of F'(v/a) can be generalized as ‘
beT:: gr?)itrary complex number. If a field K contains both F' and « then K
a

must also contain every number of the form
ana™+...+aja+ag
bkak"'- o +b1a+b()

It is clear that the set of numbers listed in (1) forrﬁslall :‘j‘leld tan?hFheéjgr; ;t ;(gl)e
i $ )
1d that contains both F' and o. We s all denote thi
Smitluflitltfiiis notation is in accordance with the earlier definition of F(ﬁ). Tél:;
goit; a € F is a positive real number and o:=+/a then the field F(1/a) coinci

with the new notion of F(«). The fact that [Q(\/i) :Q]=2 is a special case of
the following theorem.

If o is algebraic then Q(«) is a finite extension of Q, and [Q(«): Q] equals
the degree of ¢.

(ao,...,an,bo,...,bkEF). (1)

Proof. Let n denote the degree of «, and put
F={rn_1a”_1+...+r1a+'r0:r,-€Q (t=0,...,n—1)}.

LU | g .
i i l,a,...,a" '} is a generating
a linear space over Q, and the lset {L,ay..., : |
'srhsian‘ olfSF. These Elements are linearly independent over Q, smce)(itgchvxllllisSc
tl}llere would be a polynomial ¢ € Q[z] of degree <n —1 §uch FII}S.t q(faore—F. o ;
however, would contradict the fact that the de%ree of & is n. There
, i imension of F is n.
basis of n elements; that is, the dimension o . . .
It is clear that F' C Q(«). We shall prove that I is a field. S}nce_Q(a) is the
smallest field containing «, this will prove Q(a)=F' and [Q(): Q] =n. i,
Obviously, the sum and difference of elements (;E F1 alslc)) f)erllzrslgt otoF i.t "
’ f two elements of I also belo
order to prove that the product o . . _
enough to show that oF € F forevery k =0,’1, .... We shall pfcile thlS(;)); umdl;ge
tion on k. The statement is obviously true if k < 117, —1.Let k>n, an I;p _
that 1, o o~ leF. Let p(z)=z™+cp_ 2™ +...-l|:cla:+co be a pohyno
I A e ) S
mial with rational coefficients such that p(a)=0. Then " "p(c) =0, and thu

o k—n+l _ k-n
ak=_cn_1ak 1'—...—Cla COa :

. 3 i i d side belongs to F.
Since o’ € F' for every i <k, it follows that the right han

i tiplication.
Thus o* € F for every k, and hence F' is closed under multiplic




Finally, we have to prove that if 3€ F and 570 then 1/3 € F. Every ele-
ment of F is of the form f(a), where f € Q[x] and the degree of f is less than n.
(Recall that Q[z] denotes the set of polynomials with rational coefficients.) Let
deg f denote the degree of the polynomial f. We have to show that if f € Q[z],
deg f <n, and f(c)#0, then 1/f(a) € F. We shall prove this statement by in-
duction on deg f. If deg f=0 then f is a non-zero rational constant, and thus
1/f()eQCF.

Suppose that deg f =k where 0 < k < n, and that the statement is true for ev-
ery polynomial g € Q[z] of degree < k. Applying the division algorithm to the
polynomials p and f we obtain that p=gq- f +r, where ¢, 7 € Q[z] and degr < k.
Since degp=n>k, we have ¢#0. Also, k>0 implies degg <n. Therefore
q(a) #0, since otherwise the degree of o would be less than n.

We have r(a)=p(a) — ¢(a) - f(a)= —q(c) - f(c) #0. Then, by the induction
hypothesis, 1/r(«) € F. Since F is closed under multiplication, this gives

1/f(a)=—g(a)-(1/r(a)) € F,

and the proof is complete.

The connection between algebraic numbers and finite extensions of Qs
given by the following theorem: a number is algebraic if and only if it is con-
tained in a finite extension of Q.

The “only if” part is immediate from the previous theorem: if « is algebraic
then « is contained in Q(«) which is a finite extension of Q. To prove the other
direction, let F' be a finite extension of Q with [F': QJ]=n. Then any system
of linearly independent elements of F° consists of at most n elements. Hence,
for every a € F', the n+1 elements 1, ¢, ...,a"™ cannot be linearly independent.
This means that there are rational numbers ¢y, . .., ¢, such that not all of them
are zero and cpa” +...+cja+cg=0. Then « is algebraic, and this is what we
wanted to show.

We shall need the following theorem on the multiplication of degrees.

If FC K and K C L are finite field extensions, then F C L is also a finite
extension and [L: F1=[K :F]-[L: K).

Indeed, let [K: F]=n and let {ay,...,a,} be a basis of K over F. Let
[L:K]=m and {by,...,by} be a basis of L over K. Then it is easy to check
that

{aibji=1,...,n, j=1,...,m}
is a basis of L over F, and thus [L: F]l=nm.

This theorem implies that if K is a finite extension of Q then the degree of
every element of K divides [K : Q].

Indeed, let n be the degree of an element @ € K. Then Q(«) C K and [Q(«) :
Q] =n. Since [K :Q]=[Q(a): Q] - [K : Q(e)] =n[K : Q(a)], we can see that n
is a divisor of [K : Q].

Now we turn to constructible numbers and constructions. We prove Qauss’
result used in the previous section: every constructible number is algebraic and
its degree is a power of two. n eless !

Let t be a constructible number. We proved”that there is” a sequence of
fields Fop=Q C...C Fy, such that t € Fi,, and for every k=1,...,m there is a
positive number aj_) € Fi_; such that Fj, =F;?_1(\/M). Clearly, for every
L the degree [F) : Fj,_1] equals either 1 or 2 (it is 1 if Fj=Fj_1). Thus Fp
is a finite extension of Q and its degree equals the product of the degrees [F}, :
Fi1(k=1,...,m). Consequently, [F”% :Q] is a power c_>f 2. Therefore t € Fp,
is algebraic, and also its degree, as a divisor of [Fy,, : Q], is a power of 2.

Exercises

4.1. Prove that 1, v/2 and \3/5 are linearly independent over Q.

4.2. Prove that if p;,...,py are distinct primes then 1, \/py,...,+/Pn are
linearly independent over Q. (H)

43. Letap,...,a be positive rational numbers. What is the necessary and
sufficient condition of the linear independence of /a7, ..., /a; over Q7

(H)

44, Let FCK be fields and let V # {0} be a linear space over K. Prove
that if the dimension of V as a linear space over F' is finite then K is
a finite extension of F'. Show that the dimension of V as a linear space
over F equals the dimension of V as a linear space over K multiplied
by [K : F].

45. Let V be a finite dimensional linear space over Q such that z,y eV
implies xy € V. Prove that V is a field.

4.6. Let o be an algebraic number of degree n. Prove that the degree };f o?
is a divisor of n and the degree of v/« is a divisor of 2n.

4.7. Lett and € be complex numbers such that t=e+e~ L. Prove that if ¢ is
" an algebraic number of degree n then ¢ is also algebraic and its degrep
divides 2n. If, in particular, n is a power of two then the degree of ¢ is

also a power of two.




