Chapter 19

Regular Polygons

We return with more sophisticated weapons to the time-honoured problem of ruler-

and-compass construction. We shall consider the following question: for which values

of n can the regular n-sided polygon be constructed by ruler and compasses?

The ancient Greeks knew of constructions for 3-, 5-, and 15-gons; they also knew
how to construct a 2n-gon given an r-gon, by the obvious method of bisecting the
angles. We describe these constructions in Section 19.1. For about 2000 years little
progress was made beyond the Greeks. If you answered Example 7.13, then you
will have got further than they did. It seemed obvious that the Greeks had found
all the constructible regular polygons . .. Then, on 30 March 1796, Gauss made the
remarkable discovery that the regular 17-gon can be constructed (Figure 19.1). He
was 19 years old at the time. So pleased was he with this discovery that he resolved
to dedicate the rest of his life to mathematics, having until then been unable to decide
between that and the study of languages. In his Disquisitiones Arithmeticae, reprinted
as Gauss (1966), he stated necessary and sufficient conditions for constructibility of
the regular n-gon, and proved their sufficiency; he claimed to have a proof of necessity
although he never published it. Doubtless he did; Gauss knew a proof when he saw
one.

19.1 What Euclid Knew

Euclid’s Elements gets down to business straight away. The first regular polygon
constructed there is the equilateral triangle, in Book 1 Proposition 1. Figure 19.2
makes the construction fairly clear.

The square also makes its appearance in Book 1:

PROPOSITION 19.1 (Euclid)
On a given straight line to describe a square.

In the proof, which we give in detail to illustrate Euclid’s style, notation such as
[1,31] refers to Proposition 31 of Book 1 of the Elements. The proof is taken from
Heath (1956), the classic edition of Euclid’s Elements. Refer to Figure 19.3 for the
lettering.
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Figure 19.1:

The first entry in Gauss’s notebook records his construction of the
regular 17-gon.

Figure 19.2: Euclid’s construction of an equilateral triangle.
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Figure 19.3: Euclid’s construction of a square.

PROOF Let AB be the given straight line; thus it is required to describe a square
on the straight line AB.

Let AC be drawn at right angles to the straight line AB from the point A on it [1,
11}, and let AD be made equal to AB; through the point D let DE be drawn parallel
to AB, and through the point B let BE be drawn parallel to AD [1,31].

Therefore, ADEB is a parallelogram; therefore, AB is equal to DE, and AD to BE
[1, 34]. But AB is equal to AD; therefore, the four straight lines BA, AD, DE, EB are
equal to one another; therefore, the parallelogram ADEB is equilateral.

I say next that it is also right-angled. For, since the straight line AD falls upon the
parallels AB, DE, the angles BAD, ADE are equal to two right angles [1, 29].

But the angle BAD is also right; therefore, the angle ADE is also right.

And in parallelogrammic areas the opposite sides and angles are equal to one an-
other [1, 34]; therefore, each of the opposite angles ABE, BED is also right. Therefore,

ADEB is right-angled. And it was also proved equilateral. Therefore, it is a square;
and it is described on the straioht line AR, O.E.F

OSVLAULG VLt LA Stidipiay Al S5 Netian s [

Here Q.E.E (quod erat faciendum — that which was to be done) replaces the
familiar Q.E.D. (quod erat demonstrandum — that which was to be proved) because
this is not a theorem but a construction. In any case, the Latin arises in later translations;
Euclid wrote in Greek. Now imagine you are a Victorian schoolboy — it always was
a schoolboy in those days — trying to learn Euclid’s proof by heart, including the
exact choice of letters in the diagrams.

The construction of the regular pentagon has to wait until Book 4 Proposition 11,
because it depends on some quite sophisticated ideas, notably Proposition 10 of Book
4: To construct an isosceles triangle having each of the angles at the base double of the
remaining one. In modern terms, construct a triangle with angles 47/5, 4mw/5, 27/5.
Euclid’s method for doing this is shown in Figure 19.4. Given AB, find C so that
AB x BC = CAZ2. To do that, see Book 2 Proposition 11, which is itself quite
complicated — the construction here is essentially the famous “golden section,” a
name that seems tohave been introduced in 1835 by Martin Ohm (Herz-Fischler, 1998;
Livio, 2002). Euclid’s method is given in Exercise 19.10. Next, draw the circle centre
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Figure 194: Euclid’s construction of an isosceles triangle with base angles 4/5.
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Figure 19.5: Euclid’s construction of a regular pentagon. Make ACD similar to
triangle ABD in Figure 19.4, and proceed from there.

A radius AB, and find D such that BD = AC. Then triangle ABD is the one required.
With this triangle shape under his belt, Euclid then constructs the regular pentagon.
Figure 19.5 makes his method clear.
The hexagon occurs in Book 4 Proposition 15, the 15-gon in Book 4 Proposition
16. Bisection of any angle, Book 1 Proposition 9, effectively completes the Euclidean
catalogue of constructible regular polygons. ‘

19.2 Which Constructions are Possible?

That, however, was not the end of the story.

In order to obtain necessary and sufficient conditions for the existence of a ruler-
and-compass construction, we must prove a more detailed theorem than Theorem 4.
This requires a careful examination of which constructions are possible.
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LEMMA 19.2

If P is a subset of R* containing the points (0, 0) and (1, 0), then the point (x, y) can
be constructed from P whenever x and y lie in the subfield of R generated by the
coordinates of points in P.

PROOF Given any point (xg, yp) it is obvious how to construct (0, xo) and (0, yp).
From (0, 0) and (1, 0) we can construct the coordinate axes, and then proceed as in
Figure 19.6.

If we are given (0, xp) and (0, yg), then the same construction in reverse gives
(x0, ¥0). Thus to prove the lemma it is sufficient to show that given (0, x) and (0, y)
we can construct (0, x 4+ y), (0, x — y), (0, xy), and (0, x/y) when y # 0. The first
two are obvious. If we swing arcs of radius y centre (0, x), they cut the y-axis at
(0, x + y) and (0, x — y). For the other two points we proceed as follows. Join (1, 0) to
(0, y) and draw a line parallel to this through (0, x) (see Exercise 19.1). This line cuts
the x-axis at (u, 0). By similar triangles u/x = 1/y, sothat 4 = x/y. Taking x = 1
(the point (0,1) is clearly constructible) we can construct (1/y, ), hence (0, 1/y); by
taking 1/y instead of y, we get (xy, 0). From these we can find (0, xy) and (0, x/y).
See Figure 19.7.

(O :x())

(x0,¥0)

©0,y0)

Figure 19.6: Constructing (0, xq) and (0, yo) from (xq, vo).

0,x)

Oy

(1,0) (u,0)
Figure 19.7: Constructing # = x/y.
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0,/

(100 0.0 (*,0)
Figure 19.8: Constructing +/k.

LEMMA 19.3

Suppose that K(a) : K is an extension of degree 2 such that K (o) S R. Then any
point (z, w) of R? whose coordinates z, w lie in K (&) can be constructed from some
suitable finite set of points whose coordinates lie in K.

PROOF We have o 4+ pa + g = 0, where p, g € K. Hence

_ —pE/pP—4q
- 2

e

and since K(a) € R then p? — 4 must be positive. Using Lemma 2 the result
will follow if we can construct (0, k) for any positive k € K from finitely many
points (x,, y,) where x,, y, € K. To do this, construct (—1, 0) and (k, 0). Draw the
semicircle with these points as the ends of a diameter, meeting the y-axis at (0, v).
By the intersecting chords theorem, v? = 1+ k so that v = +/k (see Figure 19.8).

THEOREM 19.4
Suppose that K is a subfield of R generated by the coordinates of points in a subset

P C R?. Let a, B lie in an extension L of K, contained in R, such that there exists a
finite series of subfields '

K=KiSKiC--CK =L

suchthat[K;y1 : K;1=2forj =0, ..., r—1.Thenthe point (o, B) is constructible
from P,

PROOF  Use induction on r. The case r = 0 is covered by Lemma 19.2. Other-
wise, (a, B) is constructible from finitely many points whose coordinates lie in K, _4
by Lemma 19.3. By induction, these points are constructible from P, so (a, B) is
constructible from P.

From the proof of Theorem 19.4, the existence of such fields K; is also a necessary
condition for (o, B) to be constructible from P.
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There is a more useful, but weaker, version of Theorem 19.4. To prove it, we first
need:

LEMMA 19.5
If G is a finite group and |G| = 27, then Z(G) contains an element of order 2.

PROOF  Use the class equation (14.2). We have

14 Coto 4 Ce=2

so some C; is odd. By Corollary 14.12 this C; also divides 2", so we must have
|C;| = 1. Hence Z(G) # 1. Now apply Lemma 14.14. i

COROLLARY 19.6
If G is a finite group and |G| = 2', then there exists a series of normal subgroups

1=GoC--SG, =G

such that |G| =2/ for0<j <r.

PROOF Use Lemma 19.5 and induction. [

Now we can state and prove the promised modification of Theorem 19.4.

PROPOSITION 19.7

If K is a subfield of R, generated by the coordinates of points in a subset P C R?,
and if a and B lie in a normal extension L of K such that L C Rand[L : K} =27
for some integer r, then (o, B) is constructible from P.

PROOF L : K is separable since the characteristic is zero. Let G be the Galois
group of L : K. By Theorem 12.1(1) |G| = 27, so G is a 2-group. By Corollary 19.6,
G has a series of normal subgroups

1=Go €61 & CG6G, =G

such that |G| = 2/. Let K; be the fixed field G ;- Then by Theorem 12.1(3)
[K;4+1: K;]=2forall j. By Theorem 19.4, (o, B) is constructible from P. [

19.3 Regular Polygons

We shall use a mixture of algebraic and geometric ideas to find those values of »
for which the regular n-gon is constructible. To save breath, let us make the following
(nonstandard): :
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DEFINITION 19.8 The positive integer n is constructive if the regular n-gon is
constructible by ruler and compasses.

The first step is to reduce the problem to prime-power values of n,

LEMMA 19.9
If n is constructive and m divides n, then m is constructive. If m and n are coprime
and constructive, then mn is constructive.,

PROOF If m divides n, then we can construct a regular m-gon by joining every
dth vertex of a regular n-gon, where d = n/m.
It m and n are coprime, then there exist integers a, b such that am + bn = 1.
Therefore,
1 1 1
e N + b.........
mn n m
Hence from angles 21/ m and 27/ n we can construct 27/ mn, and from this we obtain
a regular mrn-gon.

COROLLARY 19.10
Suppose that n = p{' ... p% where p1,..., p, are distinct primes. Then n is con-
structive if and only if each p;-xj is constructive.

Another obvious result:

LEMMA 19.11
For any positive integer o, the number 2% is constructive.

PROOF The angle can be bisected by ruler and compasses, and the result follows
by induction on «. I

This reduces the problem of constructing regular polygons to the case when the
number of sides is an odd prime power. Now we bring in the algebra. In the complex
plane, the set of nth roots of unity forms the vertices of a regular n-gon. Further, these
roots of unity are the zeros in C of the polynomial

e l= =D 4+ 4 1)
We concentrate on the second factor on the right-hand side.
LEMMA 19.12

Let p be a prime such that p" is constructive, Let { be a primitive p"th root of unity
in C. Then the degree of the minimal polynomial of { over Q is a power of 2.
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PROOF Take { = exp(2mi/p™). Since p” is constructive we can construct the
point («, B) where a = cos(2w/p™) and B = sin(2m/p") by projecting a vertex of
the regular p”-gon on to the coordinate axes. Hence by Theorem 19.4

[Qe, B): Q} =27

for some integer ». Therefore,

[Q(OL, Ba l) . Q} = 2r+1

RBut(Wo. B D) econtaing oy L iR — 7 g that IOV - (D11 a nower of 2 gince (W)
AF WAL \%\“, !\J’ ‘v/ WALSLACGALARLD LA ] PH — b, [SAC SR ORI YN L%\b/ » ‘{J A L HU ¥Y¥ Wil i M, DALARN %\b/

@(a, B, i). Hence the degree of the minimal polynomial of £ over QQ is a power of

The next step is to calculate the relevant minimal polynomials to find their degrees.
It turns out to be sufficient to consider p and p? only. The analysis explains the result
we obtained in (3.3) by direct computation. [

<
2.

LEMMA 19.13
If p is a prime and { is a primitive pth root of unity in C, then the minimal polynomial

of L over Q is
fO=1+t+.. 427!

PROOF Notethat f(¢) = (#? —1)/(t —1). We know that f({) = Osince{? —1 =0
and { # 1. We are home if we can show that f(¢) is irreducible. Put # = 1 4 u where
u is a new indeterminate. Then f(¢) is irreducible over Q if and only if f(1 + u) is
irreducible. But

F(l+u) = A+up—1

iU
—_ npil L his
! 7/

—_—u plb\w

where 4 is a polynomial in # over Z with constant term 1, by the usual remark about
binomial coefficients. By Eisenstein’s Criterion, f(1 + u) is irreducible over Q. [

LEMMA 19.14
If p is a prime and { is a primitive p*th root of unity in C, then the minimal polynomial

of L over Q is
g =14+1P ... 4 ¢Pp—D)

PROOF Note that g(r) = (z‘*”2 — 1)/(t? — 1). Now CPZ —1=0butf? —1#£0s0
g(0) = 0. It suffices to show that g(¢) is irreducible over Q. As before, we make the
substitution ¢ = 1 4 u. Then

(1+u)? — 1

sll+u)= (1+u)p—1
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and modulo p this is

(1+u?’)—1

— ., p(p—1)
A+ur)—1 "

Therefore, g(1 + u) = uPP~ 4 pk(u) where k is a polynomial in  over Z. From
the alternative expression

gl4+w)=14+04+u)?+ - + 1 +u)p®D

it follows that k has constant term 1. By Eisenstein’s Criterion, g(1 + ) is irreducible
over Q.
We now come to the main result. 0

THEOREM 19.15 (Gauss)
The regular n-gon is constructible by ruler and compasses if and only if

n=2pi...ps
where r and s are integers > 0, and p., .. ., ps are odd primes of the form
pi=2"+1
for positive integers r;.
PROOF Let n be constructive. Then n = 2" pi" ... p* where p1,..., ps are
distinct odd primes. By Corollary 19.10, each p?" is constructive. If a; > 2, then p?-

is constructive by Theorem 19.4. Hence the degree of the minimal polynomial of a

primitive p?th root of unity over Q is a power of 2 by Lemma 19.12. By Lemma 19.14,

p;(p; — 1) is a power of 2, which cannot happen since p; is odd. Therefore o; =1
for all j. Therefore, p; is constructive. By Lemma 19.13
pj—1=2%
for suitable s ;. Suppose that s; has an odd divisor a > 1, so that s; = ab. Then
pi =2 +1
which is divisible by 2 + 1 since
P l=0+De* -2 4 D)
when a is odd. So p; cannot be prime. Hence s; has no odd factors, so
§; =21

for some r; > 0.
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This establishes the necessity of the given form of n. Now we prove sufficiency. By
Corollary 19.10 we need consider only prime-power factors of #. By Lemma 19.11,
2" is constructive. We must show that each p; is constructive. Let £ be a primitive
p throot of unity. Then

[Q©):Q=p;—1=2°

for some a by Lemma 19.13. Now Q({) is a splitting field for f(t) = 1 + .- - 4 P~
over Q, so that Q({) : Q is normal. It is also separable since the characteristic is zero.
By Lemma 15.6, the Galois group I'(Q({):Q) is abelian. Let K = R N Q(L). Then

cos(2m/p;)) = L+ /2 € K

Now Q({) : K has degree 2, so by Theorem 12.1 I'(Q({) : K) is a subgroup of
G = I'(Q(C) : Q) of order 2. Further, it is a normal subgroup, since G is abelian.
Therefore, K : Q is a normal extension of degree 2°~!. By Proposition 19.7, the
point (cos(27/p;), 0) is constructible. Hence p; is constructive, and the proof is

complete. [

19.4 Fermat Numbers

The problem now reduces to number theory. In 1640 Pierre de Fermat wondered
when 2% 4+ 1 is prime, and proved that a necessary condition is for k to be a power of
2. Thus we are led to:

DEFINITION 19.16  The nth Fermat number is F,, = 2%° + 1.

The question becomes: when is F,, prime?

Fermat noticed that Fp = 3, F) = 5, F, = 17, F5 = 257, and F; = 65537
are all prime. He conjectured that F, is prime for all n, but this was disproved by
Euler in 1732, who proved that F5 is divisible by 641 (Exercise 19.5). Knowledge of
factors of Fermat numbers is changing almost daily, thanks to the prevalence of
fast computers and special algorithms for primality testing of Fermat numbers (see
Internet References). At the time of writing, the largest known composite Fermat
number was F3goa40, with a factor 3.23%2447 11, and 210 Fermat numbers were known
to be composite.

The only known Fermat primes are still those found by Fermat himself:

PROPOSITION 19.17
If p is a prime, then the regular p-gon is constructible for p = 2, 3, 5, 17, 257, 65537,
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19.5 How to Draw a Regular 17-Gon

Many constructions for the regular 17-gon have been devised, the earliest published
being that of Huguenin (see Klein, 1913) in 1803. For several of these constructions
there are proofs of their correctness which use only synthetic geometry (ordinary
Euclidean geometry without coordinates). A series of papers giving a construction
for the regular 257-gon was published by E.J. Richelot (1832) under one of the longest
titles I have ever seen. Bell (1965) tells of an overly zealous research student being
sent away to find a construction for the 65537-gon, and reappearing with one 20
years later, This story, though apocryphal, is not far from the truth; Professor Hermes
of Lingen spent 10 years on the problem, and his manuscripts are still preserved at
Gottingen,

One way to construct aregular 17-gon is to follow faithfully the above theory, which
in fact provides a perfectly definite construction after a little extra calculation. With
ingenuity it is possible to shorten the work. The construction that we now describe is
taken from Hardy and Wright (1962).

Our immediate object is to find radical expressions for the zeros of the polynomial

17 -1 16
1 =t 4. +r+1 (19.1)
over C. Let
0=2m/17
Ekzekie = cos kO 4 i sin k6
The zeros of equation (19.1) in C are then &, .. ., £56.*

The powers of 3 reduced mod 17 are:

m |01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 |1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6

Define

Xy = 81+89+813:+-815+816+88+E4+82
X2 =834+€0+ &+ €1+ &4+ & + €2+ &
Y1 =8€ +&€3+E6+ &
Y2 =&+ €5+8&8+8&
Y3 = €3+ & + €14+ €12
Y4 = €10+ €11 + & + &

Now

& + €17 = 2 cos kO (19.2)
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fork=1,...,16, so

x1 = 2(cos 0 4 cos 809 + cos 46 + cos 20)
x3 = 2(cos 30 4+ cos 76 4 cos 50 4+ cos 60)

y1 = 2(cos 6 4 cos 40)
y2 = 2(cos 80 4+ cos 20)

y3 = 2(cos 30+ cos 50)
y4 = 2(cos 76 + cos 60)

Equation (19.1) implies that

X1 4 xp = -1
Now (19.3) and the identity

2 cos mB cos né = cos(m + n)0 + cos(m — n)o
imply that
x1x2 = Hx) + x2) = —4
using (19.2). Hence x; and x; are zeros of the quadratic polynomial
P 4r—4
Further, x; > 0 so that x; > x;. By further trigonometric expansions,
N+y=x iy =-—1

and yj, y, are the zeros of

2 —x1t—1
Further, y; > y2. Similarly, y; and ys are the zeros of

— xof — 1
and y; > y4. Now

2cos64+2cos40 = y;
4 cos 0 cos40 = 2cos 50 + 2¢cos 360 = y3

SO

71 =2cosf 7 = 2cos40

221

(19.3)

(19.4)

(19.5)

(19.6)
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are the zeros of
12 —vit+ 3 (19.7)

and z; > 2.
Solving the series of quadratics (19.4 to 19.7) and using the inequalities to decide
which zero is which, we obtain

<( Y,
cos@:E\—l+m+ 34—2Jﬁ
+ \/68+12JT7— 164/34 +2+/17 — 2(1 u\/’ﬁ)\/34—2\/ﬁ)

where the square roots are the positive ones.

From this we can deduce a geometric construction for the 17-gon by constructing the
relevant square roots. By using greater ingenuity it is possible to obtain an aesthetically
more satisfying construction. The following method (Figure 19.9) is due to Richmond
(1893).

Let ¢ be the smallest positive acute angle such that tan 4¢ = 4. Then ¢, 2¢, and
4¢ are all acute. Expression (19.4) can be written

12 + 4t cotdd — 4
whose zeros are
2tan2¢ —2 cot 2¢
Hence |

x) = 2tan2¢ x; = —2cot2¢

/5/\\133

NF OE N,

Figure 19.9: Construction for a regular 17-gon.
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From this it follows that

I v
yl=tﬂn(¢+z) }’2=tﬂn<¢“z) y3=tand  ys=—cotd
Then

2(cos30 + cos50) = tan b (198)

4cos36cos 50 = tan (c]) — ;)

Now (Figure 19.9) let OA, OB be two perpendicular radii of a circle. Make OI = %OB
and ZOIE = }LAOIA. Find F on AQO produced to make /EIF = 7. Let the circle
on AF as diameter cut OB in K, and let the circle centre E through K cut OA in N3
and N5 as shown. Draw N3P3; and NsPs perpendicular to OA. Then ZOIA = 4¢ and
ZOIE = ¢. Also,

ON3; — ON

2(cos ZAQP; 4 cos ZAOPs) = B TS
OA
OE E
=421 22 ¢
oAt oI an ¢
and
ONj3 x ONs
LA Al Y

4 cos ZAOP; cos ZAOPs SA < OA

OK?

= —4—>
OA
OA

fl

OF ey
% nfo-3)

Comparing these with Equation (19.8) we see that
ZAOP; = 36 ZAOPs = 50

Hence A, Ps, Ps are the zeroth, third, and fifth vertices of a regular 17-gon inscribed
in the given circle. The other vertices are now easily found.

Exercises

19.1 Using only the operations ruler and compasses, show how to draw a parallel to
a given line through a given point.
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19.2

=
\O
LI

19.4

19.5

19.6

19.7

19.8

19.9%*

19.10

Regular Polygons

Verify the following approximate constructions for regular n-gons found by
Oldroyd (1955):

Ql

1

A~

5

a. 7-gon. Construct cos™ “;0 giving an angle of approximately 27/7.
b. 9-gon. Construct cos™ 5*/150’1.

¢. 11-gon. Construct cos™! £ and cos™! 1 and take their difference.

d. 13-gon. Construct tan~! 1 and tan~! 4—*%3-/5 and take their difference.

Work out the approximate size of Figps49, Which is known to be composite,
Explain why it is no easy task to find factors of Fermat numbers.

Use the equations
641 =54 42 =527+ 1
to show that 641 divides Fs.

Show that
Fn-l—l :2+FnFn—l~--F0

and deduce that if m 3 n, then F,, and F, are coprime. Hence show that there
are infinitely many prime numbers,

List the values of n < 100 for which the regular »-gon can be constructed by
ruler and compasses.

Verify the following construction for the regular pentagon.

Draw a circle centre O with two perpendicular radii OPy, OB. Let D be
the midpoint of OB, join PoD. Bisect ZODP, cutting OP; at N. Draw NP,
perpendicular to OPy cutting the circle at P;. Then Py and P; are the zeroth and
first vertices of a regular pentagon inscribed in the circle.

Discuss the construction of regular polygons using a ruler, compasses, and an
angle trisector. (For example, 9-gons or 13-gons are then constructible. Use the
trigonometric solution of cubic equations.)

Euclid’s construction for an isosceles triangle with angles 4w/5, 4w/5, 27/5
depends on constructing the so-called golden section: that is, fo construct a
given straight line so that the rectangle contained by the whole and one of the
segments is equal to the square on the other segment. The Greek term was
“extreme and mean ratio.” In Book 2 Proposition 11 of the Elements Euclid
solves this problem as in Figure 19.10.



Exercises 225

F G
A H 3
E/

C K D

Figure 19.10: Cutting a line in extreme and mean ratio.

Let AB be the given line. Make ABDC a square. Bisect AC at E, and make
EF = BE. Now find H such that AH = AF. Then the square on AH has the
same area as the rectangle with sides AB and BH, as required.

Prove that Euclid was right,

19.11 Mark the following true or false.

=3

® -0 &0 o

2" 4+ 1 cannot be prime unless » is a power of 2.

If n is a power of 2, then 2" + 1 is always prime.

The regular 771-gon is constructible using ruler and compasses.
The regular 768-gon is constructible using ruler and compasses.
The regular 51-gon is constructible using ruler and compasses.

The regular 25-gon is constructible using ruler and compasses.
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and compasses.

For an odd prime p, the regular p-gon is never constructible using ruler

If » is an integer > 0, then a line of length /# can always be constructed
using ruler and compasses.

If » is an integer > 0, then a line of length /# can always be constructed
using ruler and compasses.

. A point whose coordinates lie in a normal extension of (Q whose degree

is a power of 2 is constructible using ruler and compasses.

If p is a prime, then 7 — 1 is irreducible over Q.



