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ABSTRACT. We study the tightness of positive contact surgery on Legendrian knots in tight contact
3-manifolds. Along with more general results, we give a partial generalisation of a result of Lisca and
Stipsicz: if L is a null-homologous Legendrian knot with tbpLq ď ´2 and |rotpLq| ą 2gpLq´1` tbpLq,
then contact p1q–surgery on L is overtwisted. We also give a condition under which all positive contact
surgeries on a Legendrian knot are overtwisted.

1. INTRODUCTION

Given a Legendrian knot L in pS3, ξstdq with tbpLq ď ´2, Lisca and Stipsicz proved in [18]
that contact p1q–surgery on L has vanishing Heegaard Floer contact invariant. It is natural to ask
whether these are indeed overtwisted. We answer this question for a large class of such knots, as
well as more generally in an arbitrary contact 3-manifold.

Theorem 1.1. Let L Ă pM, ξq be a null-homologous Legendrian knot, where c1pξq is torsion, and tbpLq ď
´2. Then if

ˇ

ˇn ¨ rotpLq ´ pn´ 1q ¨ tbpLq
ˇ

ˇ ą np2gpLq ´ 1q ` tbpLq

for a positive integer n ă |tbpLq|, where gpLq is the genus ofL, then contact pnq–surgery onL is overtwisted.

In particular, if tbpLq ď ´2 and |rotpLq| ą 2g ´ 1` tbpLq, then contact p1q–surgery is overtwisted.

Remark 1.2. The necessity of a condition on rotpLq in Theorem 1.1 was shown by Onaran [20].
However, the condition given above might not be the tightest possible condition; even so, the
current condition only leaves out a finite set of ptb, rotq pairs for each knot genus g.

Recall that unless n “ 1{k, there is no unique choice of contact pnq–surgery. However, there is
a preferred set of choices (which we call the natural surgery), which correspond to inadmissible
transverse surgery on the positive transverse push-off of L, see [4]. In this paper, by “contact
pnq–surgery”, we mean the natural surgery, unless otherwise stated. For a precise definition, see
Section 2.

Our second result gives a condition under which all positive contact surgeries on L are over-
twisted.

Theorem 1.3. Let L Ă pM, ξq be a null-homologous Legendrian knot, where c1pξq is torsion, and let gpLq
be the genus of L.

‚ If tbpLq ´ rotpLq ă ´2gpLq ´ 1, then all natural positive contact surgeries on L are overtwisted.
‚ If, in addition, tbpLq ` rotpLq ă ´2gpLq ´ 1, then all (including non-natural) positive contact

surgeries on L are overtwisted.

The following statement is a natural corollary of Theorem 1.1.

Corollary 1.4. For every genus g and every positive integer n ě 2, there is a positive integerNg,n such that
if L is a null-homologous Legendrian knot of genus g and tbpLq ď ´Ng,n, then contact pnq–surgery on L is
overtwisted.

Another result of Lisca and Stipsicz [18] is that contact p1q–surgery on a negative torus knot is
overtwisted. Since all negative torus knots satisfy both conditions in Theorem 1.3, we can say the
following.
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Corollary 1.5. All (including non-natural) positive contact surgeries on negative torus knots in pS3, ξstdq
are overtwisted.

The figure-eight knot L Ă pS3, ξstdq with tbpLq “ ´3 and rotpLq “ 0 is the simplest knot that
does not satisfy the conditions of Theorem 1.3. However, the fact that all positive contact surgeries
on L are overtwisted can be proved using convex surface theory, see [5].

Looking beyond Lisca and Stipsicz’s result, Mark and Tosun [19] have completely characterised
when positive contact surgery on L Ă pS3, ξstdq has non-vanishing Heegaard Floer contact variant.
Since this is an algebraic and not contact geometric result, the following natural question is still
open.

Question 1.6. Is the result of positive contact surgery on a Legendrian knot in S3 overtwisted whenever the
Heegaard Floer contact class of the surgered manifold vanishes?

1.1. Organisation of Paper. Section 2 gives the necessary background on contact surgery. Section 3
discusses invariants of rationally null-homologous Legendrian knots, which will be needed in the
proofs of Theorems 1.1 and 1.3, which can be found in Section 4.

1.2. Acknowledgements. The author would like to thank John Etnyre for his support and many
invaluable discussions throughout this project, and Kenneth Baker for useful conversations. The
author also thanks an anonymous referee, who gave helpful suggestions. This work was partially
supported by NSF Grant DMS-13909073.

2. CONTACT SURGERY

We give a description of positive contact surgery, following [15]. We assume basic knowledge of
contact structures and Legendrian knots (see [9,10]) as well as some convex surface theory (see [8]).

Given a null-homologous Legendrian knot L Ă pM, ξq, we define contact prq–surgery on L, for
some rational r ą 0. The surgery coefficient r is understood to be given with respect to the contact
framing on L, and so contact prq–surgery on L results in the manifold given by smooth ptbpLq` rq–
surgery on K, the underlying smooth knot type of L.

Pick a standard neighbourhood of L that has convex boundary, divided by two dividing curves
that give the contact framing of L. Our goal is to remove the interior of the standard neighbour-
hood, glue in a solid torus to achieve the correct smooth surgery, and then extend the contact
structure on the complement of L over the new solid torus such that it restricts to a tight contact
structure on the solid torus.

In general, such an extension is not unique. There is a unique tight extension over a solid torus
with given convex boundary when the dividing set on the boundary is a pair of curves isotopic
to the core of the solid torus, by Kanda [16]. However, there are two minimally twisted tight
extensions over T 2 ˆ r0, 1swith given convex boundary, such that the homology classes of the two
pairs of dividing curves on T 2 ˆ t0u and T 2 ˆ t1u form an integral basis for H1pT

2q, by Honda [15]
(see there for the precise definition of all terms). Such a contact structure on T 2 ˆ I is called a basic
slice. These two extensions can be distinguished by their relative Euler classes, which differ by a
sign, and we call them positive and negative. The terminology can be pinned down by requiring that
the result of gluing a negative (resp. positive) basic slice to the complement of a Legendrian knot L
is the complement of a negative (resp. positive) stabilisation of L.

Given a rational number r ą 0, to do contact prq–surgery, pick a sequence of rational numbers
tbpLq “ r0, . . . , rn “ tbpLq ` r, where ri´1 and ri are slopes of curves on T 2 that form an integral
basis of H1pT

2q (where p{q corresponds to p meridians and q Seifert longitudes). Let M0 be the
complement of L. For each i “ 1, . . . , n ´ 1, construct Mi by gluing a basic slice (either positive or
negative) to Mi´1 along the boundary, such that the new boundary has dividing curves of slope ri.
Finally, construct Mn by gluing a solid torus to Mn´1 such that the slope rn “ tbpLq ` r bounds a
disc in the resulting manifold.
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Not all such choices give a tight contact structure on the solid torusMnzM0. However, if we pick
the shortest such path such that r1 “ 8 and r2 ą r3 ą ¨ ¨ ¨ ą rn, then this will always result in a
tight contact structure on the solid torus. We define the natural contact prq–surgery to be the contact
structure created by using the path described above, and only choosing negative basic slices. This
is the most well-studied choice, and also is the one that corresponds to inadmissible transverse
surgery on a positive transverse push-off of L, see [4].

3. INVARIANTS OF RATIONALLY NULL-HOMOLOGOUS LEGENDRIAN KNOTS

In this section, we define the rational Thurston–Bennequin tbQpLq and the rational rotation num-
ber rotQpLq of a rationally null-homologous Legendrian knot L, and see how these invariants
change under surgery. See [1] for more details and properties.

Given a rationally null-homologous Legendrian knot L Ă pM, ξq, where M is a rational homol-
ogy sphere, let Σ be a rational Seifert surface for L with connected binding. That is, BΣ is connected
and is homologous to r ¨rLs, where r is the smallest positive integer such that r ¨rLs “ 0 P H1pM ;Zq.
Given another Legendrian knot L1, we define the rational linking to be

lkQpL,L
1q “

1

r
rΣs ¨ rL1s.

Consider the framing of the normal bundle of L induced by ξ|L. Let the Legendrian knot L1 be
a push-off of L in the direction of this framing. Then we define the rational Thurston–Bennequin
number of L to be

tbQpLq “ lkQpL,L
1q.

Let ι : Σ Ñ M be an embedding on the interior of Σ. We choose a trivialisation τ of the pull-back
bundle ι˚pξq over Σ. Along BΣ, τ gives an isomorphism of the bundle to BΣˆR2.The tangent vector
to BιpΣq gives a framing of ξ|L, so its pullback v gives a framing of ι˚pξq along BΣ. We define the
rational rotation number of L to be

rotQpLq “
1

r
windτ pvq,

where windτ pvqmeasures the winding number of v in R2 with respect to the trivialisation τ .

A Legendrian knot L in an overtwisted contact manifold is called loose if the complement of a
standard neighbourhood of L is overtwisted; otherwise, it is called non-loose.

Theorem 3.1 (Świątkowski [7], Etnyre [11], Baker–Onaran [2]). If L Ă pM, ξq is a rationally null-
homologous Legendrian knot such that the complement of a regular neighbourhood of L is tight, then

´|tbQpLq| ` |rotQpLq| ď ´
χpLq

r
,

where r is the order of rLs in H1pM ;Zq, and χpLq is the Euler characteristic of a rational Seifert surface for
L.

Remark 3.2. In fact, Baker and Etnyre showed [1] that if the contact structure is tight, the rational
homotopy invariants of a rationally null-homologous Legendrian knot satisfy tbQpLq` |rotQpLq| ď
´χpLq{r. This gives in some cases a better inequality than that from Theorem 3.1, but does not
improve the results of this paper.

The following lemma has been proved by Lisca, Ozsváth, Stipsicz, and Szabó [17] and Geiges
and Onaran [13] for surgeries in pS3, ξstdq. We extend it to surgeries in a more general contact
manifold.

Proposition 3.3. Let L0 Y ¨ ¨ ¨ Y Ln Ă pM, ξq be a collection of null-homologous Legendrian knots, where
c1pξq is torsion. Perform contact p˘1q–surgery on Li, for i “ 1, . . . , n (the sign need not be the same for
each i), and let ai be the smooth surgery coefficient. Assume that the resulting manifold pM 1, ξ1q has the
same rational homology as M . Let N “ pNijq for 1 ď i, j ď n be the matrix given by

Nij “

"

ai i “ j,
lkpLi, Ljq i ‰ j,
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and let N0 “ ppN0qijq for 0 ď i, j ď n be the matrix given by

pN0qij “

$

&

%

0 i “ j “ 0,
ai i “ j ě 1,
lkpLi, Ljq i ‰ j.

Then the rational classical invariants for L, the image of L0 in pM 1, ξ1q, are

tbQpLq “ tbpL0q `
detN0

detN
,

and

rotQpLq “ rotpL0q ´

〈¨

˚

˝

rotpL1q

...
rotpLnq

˛

‹

‚

, N´1

¨

˚

˝

lkpL0, L1q

...
lkpL0, Lnq

˛

‹

‚

〉
.

Proof. We refer the reader to [13, Lemma 2] for the proof of the formula for tbQpLq, which goes
through essentially unchanged; we give here the proof of the formula for rotQpLq, explained in
full to allow for the differences to be comprehensible. For each i “ 0, . . . , n, let λi and µi be the
Seifert framing and meridian respectively for Li in M . Because each Li is null-homologous, we can
conclude that

H1pM
1zLq – H1pMq ‘

´

Zxµ0y ‘ ¨ ¨ ¨ ‘ Zxµny
¯

{xaiµi `
n
ÿ

j“0
j‰i

lkpLi, Ljqµj “ 0, i “ 1, . . . , ny.

From the Mayer-Vietoris sequence of M 1 “M 1zLY L, we get the short exact sequence

0 Ñ Zxµ0y ‘ Zxλ0y Ñ H1pM
1zLq ‘H1pLq Ñ H1pM

1q Ñ 0.

Note that Zxλ0y Ñ H1pLq is an isomorphism, and µ0 maps to 0 in H1pLq. Note also that the H1pMq
summand in H1pM

1zLq maps isomorphically onto the H1pMq summand in H1pM
1q, and the other

summands of H1pM
1zLqmap into the other summands of H1pM

1q. Thus we can get the short exact
sequence

0 Ñ Zxµ0y Ñ H1pM
1zLq{H1pMq Ñ H1pM

1q{H1pMq Ñ 0.

Since H1pM
1;Qq “ H1pM ;Qq, the preceding exact sequence considered with rational coefficients

implies that the residue of PD c1pξ
1, Lq in H1pM

1zL;Qq{H1pM ;Qq is some rational multiple of µ0.

To get a formula for PD c1pξ,
n
ď

i“0

Liq, we start with a non-zero vector field v over Li. Given Seifert

surfaces Σ0, . . . ,Σn for L0, . . . , Ln in M , we extend v over Σi such that there are rotpLiq zeroes over
Σi. Finally, we extend over the rest of M . The zero set of v tells us that

PD c1pξ,
n
ď

i“0

Liq “
n
ÿ

i“0

rotpLiqµi ` x,

where x is the push-forward of some class in H1pMq that by construction does not intersect Σi.

We claim that we can construct a rational Seifert surface Σ for L in M 1 such that x ¨ rΣs “ 0. We
then calculate that in pM 1, ξ1q, if L is order r in H1pM

1q, then

r ¨ rotQpLq “ PD c1pξ
1, Lq ¨ rΣs.

Notice that PD c1pξ
1, Lq is the push-forward of PD c1pξ,

n
ď

i“0

Liq, and x ¨ rΣs “ 0. Thus with rational

coefficients, the only free part left that could act non-trivially on Σ is generated by µ0, and since
µ0 ¨ rΣs “ r, it must be rotQpLqµ0.
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With rational coefficients, the summand of PD c1pξ,
n
ď

i“0

Liq corresponding to the µi can be written

as an element of the Q summand of H1pM
1;Qq generated by µ0. Thus we have the equation

n
ÿ

i“0

rotpLiqµi “ rotQpLqµ0

in H1pMzL0;Qq. Note that the surgery gives a cobordism X : M ÑM 1, where H2pXq “ H2pMq ‘
Zn and H2pX,Mq “ Zn. Thus the long-exact sequence of the pair pX,Mq gives

H2pMq Ñ H2pXq Ñ H2pX,Mq,

where the first map is an isomorphism into the H2pMq summand of H2pXq, and the second map is
0 on the H2pMq summand, and acts as the matrix N on the Zn summand. Thus we see that N is
an injective map, and thus with rational coefficients, we can invert it. The formula for rotQpLq then
follows.

Let rΣi be Σi minus the interior ofNpL0qY¨ ¨ ¨NpLnq. To prove the claim, we construct a surface rΣ

inM in a neighbourhood of rΣ0Y¨ ¨ ¨Y rΣn such that its image inM 1 can be capped off (by meridians
of the surgery duals to L1, . . . , Ln) to a rational Seifert surface Σ for L. Since x ¨ rΣis, we have that
x ¨ rrΣs “ 0 as well.

First note that for every positive intersection of Li and Σj , the intersection of BNpLiq with rΣj is
´µi, a meridian that in M links Li once negatively, see FIgure 1. We start with r copies of rΣ0, and
we would like to pick |ki| copies of rΣi, i “ 1, . . . , n, such that

kiλi ´

¨

˚

˝

r ¨ lkpL0, Liq `
n
ÿ

j“1
j‰i

kj ¨ lkpLi, Ljq

˛

‹

‚

µi “ ki pλi ` aiµiq .

If ki ă 0, we reverse the orientation of rΣi. This system of equations corresponds to the intersec-
tion of the collection of surfaces with BNpLiq, for each i. Comparing the coefficients of µi in each
equation, we see that

n
ÿ

i“1

ki ¨ lkpLi, Ljq “ ´r ¨ lkpL0, Liq,

where we define lkpLi, Liq to be ai. Notice that this is the same as the equation

N

¨

˚

˝

k1
...
kn

˛

‹

‚

“

¨

˚

˝

´r ¨ lkpL0, L1q

...
´r ¨ lkpL0, Lnq

˛

‹

‚

.

Since N is invertible, we can solve for ki. We claim that each ki is an integer. To see this, first note

that the order r of L is the order of rLs “
n
ÿ

i“1

lkpL0, Liqµi in H1pM
1;Zq. Since

´r ¨
n
ÿ

i“1

lkpL0, Liqµi “ 0

in H1pM
1;Zq, we know that it is a sum of the relations

aiµi `
n
ÿ

j“0
j‰i

lkpLi, Ljqµj .
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Putting these quantities in vector form, this is equivalent to
¨

˚

˝

´r ¨ lkpL0, L1q

...
´r ¨ lkpL0, Lnq

˛

‹

‚

being an integer linear combination of the columns of N , where the coefficients of the linear com-
bination are exactly ki.

The boundary of the 2-complex given by the union of r copies of rΣ0 and ki copies of rΣi, i “

1, . . . , n is homologous to an pr, sq curve on BNpLq, for s “
n
ÿ

i“0

ki ¨ lkpL0, Liq, and ki copies of a

p1, aiq curve on BNpLiq. Thus we can find some smooth embedded surface rΣ in a neighbourhood
of rΣ0Y ¨ ¨ ¨ Y rΣn with boundary given by the oriented resolution of the boundary of the 2-complex.
The boundary components of rΣ on BNpLiq, i “ 1, . . . , n, bound discs in M 1, and capping off these
components gives a rational Seifert surface Σ for L in M 1. �

Σj

Li

Lj

´µi

>

>

<

FIGURE 1. When Li and Lj link positively, the intersection of Σj with the bound-
ary of a neighbourhood of Li is ´µi.

Remark 3.4. If c1pξq is non-torsion, then rotation numbers may depend on the relative homology
class of the Seifert surfaces that are chosen. Thus, given Seifert surfaces Σ0, . . . ,Σn, and using
rotpLi,Σiq in the formulae, the same proof will calculate rotQpL,Σq, where Σ is constructed from
Σ0, . . . ,Σn as in the proof. However, for clarity, we will state all our results in the context of c1pξq
torsion.

Remark 3.5. The proof of the formula for tbQpLq is entirely topological. Thus, if we consider the
contact surgery diagram as a smooth surgery diagram, and perform Kirby calculus moves on the
diagram, then using theM andM0 from the new diagram will still give the correct value for tbQpLq.
The calculations for rotQpLq, however, are contact geometric in nature, and so must respect the
contact surgery diagram chosen.

4. OVERTWISTED SURGERIES

In this section, we prove Theorems 1.1 and 1.3. We start by describing the approach to both
proofs.
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Given a LegendrianL Ă pM, ξq, consider the core of the surgery torusL˚ in pMtbpLq`1pLq, ξp1qpLqq,
the result of contact p1q–surgery on L. This is naturally a Legendrian knot, and the complement of
a standard neighbourhood of L˚ is naturally identified with the complement of a standard neigh-
bourhood of L in pM, ξq. We denote the result of a single negative (resp. positive) stabilisation of
L˚ by L˚´ (resp. L˚`). It is not hard to see that a curve giving the contact framing of L˚˘ is isotopic
in the complement of L to a meridian of L.

Thus, the complement of a standard neighbourhood of L˚´ (resp. L˚`) with convex boundary is
the manifold obtained from the complement of L by attaching a negative (resp. positive) bypass
to get meridional dividing curves. We claim that if these contact manifolds with convex boundary
are overtwisted, then all positive contact surgeries on L are overtwisted. This follows from the
description of positive contact surgery in Section 2: the first step is to add a bypass layer to get to
the meridional slope, and then to glue on further basic slices and a solid torus. Thus, the contact
manifold with meridional dividing curves on the boundary embeds into the final result of contact
surgery, and so if it is overtwisted, it follows that the surgered manifold is also overtwisted. If we
can show that the complement of a standard neighbourhood of L˚´ is overtwisted, then we can
show that all natural contact surgeries on L are overtwisted (and in fact any surgery that begins
with a negative basic slice). If, in addition, the complement of a standard neighbourhood of L˚`
is overtwisted, then it follows that all positive contact surgeries on L (regardless of choices) are
overtwisted.

Our tool to show that the complement of a standard neighbourhood of a Legendrian knot is
overtwisted is Theorem 3.1, and we use Proposition 3.3 to calculate the relevant invariants.

We first prove Theorem 1.3. Our proof was inspired by (and runs similarly to) [2, Theorem 4.1.8].

Proof of Theorem 1.3. Let K be the smooth knot type of L. Consider contact p1q–surgery on L, and
let L˚ be the surgery dual. This surgery is smoothly equivalent to smooth ptbpLq ` 1q–surgery on
K. Consider a Legendrian push-off L0 of L. This is smoothly a p1, tbpLqq curve on the boundary
of a neighbourhood of L, where the longitude is given by the Seifert framing. In particular, L0 is
parallel to the dividing curves on the convex boundary of a standard neighbourhood of L. Thus
L˚0 , the image of L0 after surgery on L, is still parallel to the dividing curves on the boundary of a
standard neighbourhood of L˚, and thus is Legendrian isotopic to L˚. Hence we conclude that

χpL˚0 q “ χpL˚q “ χpLq “ 1´ 2gpLq.

We use Proposition 3.3 to work out the rational Thurston–Bennequin and rotation numbers of
L˚0 . We have

N “ ptbpLq ` 1q

and

N0 “

ˆ

0 tbpLq
tbpLq tbpLq ` 1

˙

.

Thus since tbpL0q “ tbpLq, rotpL0q “ rotpLq, and lkpL0, Lq “ tbpLq, we calculate

tbQpL
˚
0 q “ tbpL0q `

detN0

detN

“ tbpLq ´
tbpLq2

tbpLq ` 1

“
tbpLq

tbpLq ` 1
,

rotQpL
˚
0 q “ rotpL0q ´ rotpLq ¨N

´1lkpL0, Lq

“ rotpLq ´ rotpLq ¨

ˆ

1

tbpLq ` 1

˙

ptbpLqq

“
rotpLq

tbpLq ` 1
.
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Consider L˚` and L˚´, the positive and negative stabilisations of L˚0 . As in the discussion pre-
ceding the theorem, the complement of L˚˘ is exactly the complement of L in pM, ξqwith a positive
or negative basic slice added to the boundary to take the dividing curves of the boundary torus
to meridional curves. Thus, to show that the latter contact manifolds are overtwisted, we show
that L˚˘ are loose under the hypotheses of the theorem, and then we are done, by the discussion
preceding the theorem.

Assume that tbpLq´ rotpLq ă ´2gpLq´1. We will use Theorem 3.1 to prove that L˚´ is loose. We
see that

tbQpL
˚
´q “

tbpLq

tbpLq ` 1
´ 1 “

´1

tbpLq ` 1
,

rotQpL
˚
´q “

rotpLq

tbpLq ` 1
´ 1 “

rotpLq ´ tbpLq ´ 1

tbpLq ` 1
.

Plugging these into Theorem 3.1, our assumption gives us that

´|tbQpL
˚
´q| ` |rotQpL

˚
´q| “

|tbpLq ´ rotpLq ` 1| ´ 1

|tbpLq ` 1|
ą

2gpLq ´ 1

|tbpLq ` 1|
“ ´

χpL˚´q

|tbpLq ` 1|
,

and so L˚´ is loose, by Theorem 3.1.

If we assume now that we also have tbpLq ` rotpLq ă ´2gpLq ´ 1, similar analysis to the above
will show that L˚` is also loose. Then all positive contact surgeries on L (regardless of choices) are
overtwisted, as explained in the discussion preceding the theorem. �

Now we turn to the proof of Theorem 1.1, where we look at (natural) contact pnq-surger,y for
positive integers n. Note, though, that there is only one other way to do contact pnq–surgery, and
that choice is equivalent to the natural contact pnq–surgery on ´L, which is L with its orientation
reversed.

Proof of Theorem 1.1. Let L be a Legendrian knot with tbpLq “ t and rotpLq “ r. Let L1 and L12 be
push-offs of L. Stabilise L12 once negatively to get L2, and let L3, . . . , Ln be push-offs of L2. By [6],
contact pnq–surgery on L is equivalent to contact p1q–surgery on L1 and contact p´1q–surgery on
L2, . . . , Ln. Let L˚ be the image of L after the surgeries on L1, . . . , Ln. According to Remark 3.5, any
smooth surgery diagram smoothly equivalent to the original one can be used to calculate tbQpL˚q.
Thus, we can assume we are doing smooth pt ` nq–surgery on a single knot K that has linking t
with L. Thus we can set

N “ pt` nq and N0 “

ˆ

0 t
t t` n

˙

.

So we calculate that

tbQpL
˚q “ t`

detN0

detN
“ t´

t2

t` n
“

tn

t` n

In order to calculate rotQpL˚q, however, we must use the contact surgery diagram that we started
with. Thus we have the nˆ n matrix given by

N “

¨

˚

˚

˚

˚

˚

˚

˚

˝

t` 1 t t ¨ ¨ ¨ t t
t t´ 2 t´ 1 ¨ ¨ ¨ t´ 1 t´ 1
t t´ 1 t´ 2 ¨ ¨ ¨ t´ 1 t´ 1
...

...
...

. . .
...

...
t t´ 1 t´ 1 ¨ ¨ ¨ t´ 2 t´ 1
t t´ 1 t´ 1 ¨ ¨ ¨ t´ 1 t´ 2

˛

‹

‹

‹

‹

‹

‹

‹

‚

.
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It can be verified that its inverse is given by

N´1 “
1

t` n

¨

˚

˚

˚

˚

˚

˚

˚

˝

n´ pn´ 1qt t t ¨ ¨ ¨ t t
t 1´ n´ t 1 ¨ ¨ ¨ 1 1
t 1 1´ n´ t ¨ ¨ ¨ 1 1
...

...
...

. . .
...

...
t 1 1 ¨ ¨ ¨ 1´ n´ t 1
t 1 1 ¨ ¨ ¨ 1 1´ n´ t

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

We can then calculate that
¨

˚

˚

˚

˚

˚

˝

r
r ´ 1
r ´ 1

...
r ´ 1

˛

‹

‹

‹

‹

‹

‚

¨N´1

¨

˚

˚

˚

˚

˚

˝

t
t
t
...
t

˛

‹

‹

‹

‹

‹

‚

“
1

t` n

¨

˚

˚

˚

˚

˚

˝

r
r ´ 1
r ´ 1

...
r ´ 1

˛

‹

‹

‹

‹

‹

‚

¨

¨

˚

˚

˚

˚

˚

˝

tn
´t
´t
...
´t

˛

‹

‹

‹

‹

‹

‚

“
pr ` n´ 1q ¨ t

t` n
.

Finally, we can conclude that

rotQpL
˚q “ r ´

pn` r ´ 1q ¨ t

t` n
“
rn´ tn` t

t` n
.

We now consider k positive or negative stabilisationsL˚
˘k ofL˚, and plug the Thurston–Bennequin

number and rotation number of L˚
˘k into Theorem 3.1 to show that that the complement of L˚

˘k is
overtwisted, and hence that the result of surgery on L is overtwisted.. Let L˚k be the k-fold stabil-
isation of L˚ with stabilisation sign equal to the sign of rotQpL˚q (with any choice if the rotation
vanishes). Then for large k,

´|tbQpL
˚
kq| ` |rotQpL

˚
kq| “ |rotQpL

˚q| ` k ´ |tbQpL
˚q ´ k|

“
|rn´ tn` t|

|t` n|
` k ´

ˆ

k ´
|tn|

|t` n|

˙

“
|rn´ tn` t| ` |tn|

|t` n|
.

The first equality is true because the sign of the stabilisation is chosen to agree with the sign of
rotQpL

˚q, and the second equality is true because k is large and tbQpL˚q is positive.

We now need to work out the genus of L˚k , ie. the genus of L˚, in order to calculate χpL˚q. We see
that in M , L is a p1, tq cable of K, the single knot on which we performed smooth pt ` nq–surgery
above to get the same manifold as contact surgery on L1, . . . , Ln (an pr, sq-cable is a cable composed
of r longitudes and s meridians). Although L is smoothly isotopic to K, in general, the image L˚

of L in Mt`npKq is not isotopic to K˚, the surgery dual knot to K; if n “ 1, then it is true that a
push-off of a Legendrian knot gives a framing to the surgery dual to contact p1q–surgery on the
original Legendrian (and this is also true for contact p´1q–surgery), but this is false for general n.
We claim that L˚ is in fact a p´n, 1q-cable of K˚. This can be seen by calculating the image of the
cable under the map gluing the surgery torus into MzNpKq, in the coordinate system where the
longitude of K˚ is isotopic to a meridian of K.

ˆ

0 1
1 t` n

˙´1ˆ
1
t

˙

“

ˆ

´t´ n 1
1 0

˙ˆ

1
t

˙

“

ˆ

´n
1

˙

.

Letting m “ gcdpn, |t ` n|q, we see that this knot has order |t ` n|{m in H1pMt`npKq;Zq. Note
also, that the boundary of the Seifert surface traces a p´t´n1 q “

`

|t`n|
1

˘

curve on the boundary of a
neighbourhood of K˚. So we write

|t` n|

m
¨

ˆ

´n
1

˙

“
´n

m
¨

ˆ

|t` n|
1

˙

´
t

m
¨

ˆ

0
1

˙

,
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where on the right, the first summand is copies of the Seifert surface, and the second summand is
copies of the meridian of K˚. Thus, a rational Seifert surface for L˚ is composed of n{m copies of
the rational Siefert surface Σ forK˚ and |t|{m copies of a meridional compressing disc forK˚, with
bands corresponding to the intersections of p´n1 qwith the |t|{m meridians. So

χpL˚q “
n

m
χpΣq `

|t|

m
´
|nt|

m
“
np1´ 2gq ` nt´ t

m
,

since t ă 0 and n ą 0. Thus if
|rn´ tn` t| ` |tn|

|t` n|
ą ´

χpL˚kq

|t` n|{m
“
np2g ´ 1q ` t´ nt

|t` n|
,

then L˚k is loose and the contact structure onMt`npKq is overtwisted. Then our inequality is equiv-
alent to requiring

|rn´ tn` t| ą np2g ´ 1q ` t.

Hence under our hypotheses, L˚k is loose as required. �

In contrast to the above results, we present an infinite family of Legendrian knots with arbitrarily
low maximum Thurston–Bennequin number that admit tight positive contact surgeries.

Proposition 4.1. For every positive integer n, there is an infinite family of null-homologous Legendrian
knots in pS3, ξstdq with tb “ ´n, such that contact pnq–surgery on each knot is tight.

Proof. We look for Legendrian knots L that are smoothly slice (ie. g4 “ 0), as this implies that τ “
ε “ 0, by [14], and such that tbpLq´rotpLq “ 2τ´1 “ ´1. If tbpLq “ ´n, then [19, Theorem 1.2] says
that contact pnq–surgery is tight (and the resulting contact manifold has non-vanishing Heegaard
Floer contact invariant).

Consider the slice knot 946, which has a Legendrian representative L1 with tb “ ´1 and rot “ 0,
and the slice knot 820, which has a Legendrian representative L2 with tb “ ´2 and rot “ ´1
(information on both knots is from [3]). Now consider the Legendrian knots

Lm,n “
´m

#L1

¯

#

´n
#L2

¯

for non-negative integersm and n, where the connected sum of 0 objects is taken to be the standard
Legendrian unknot. Under connected sum, the slice genus is additive, so Km,n is slice for all m,n.
According to [12], the rotation number of Legendrian knots under connected sum is additive, and
the Thurston–Bennequin number adds like

tbpL#L1q “ tbpLq ` tbpL1q ` 1.

Thus
tbpLm,nq “ ´n´ 1 and rotpLq “ ´n.

Then, the infinite family tLm,n´1um satisfies the desired requirements. �

An earlier version of this paper asked the following question: if L is a null-homologous Legen-
drian knot with tbpLq ď ´2, then is contact pnq–surgery on L overtwisted for any positive integer
n ă |tbpLq|? Since then, Onaran [20] has given infinitely many examples giving a negative answer
to the original question.
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